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Implementation details of deep-DRT

Under the framework of distribution of relaxation times (DRT) analysis, impedance, , can 𝑍𝐷𝑅𝑇

be calculated using the equation below:

𝑍𝐷𝑅𝑇(𝛾, 𝑓) = 𝑖2𝜋𝑓𝐿0 + 𝑅∞ +
∞

∫
‒ ∞

𝛾(ln 𝜏)
1 + 𝑖2𝜋𝑓𝜏

𝑑𝑙𝑛𝜏 (1)

where  is the frequency,  is a timescale variable,  is the ohmic resistance,  is the distribution 𝑓 𝜏 𝑅∞ 𝛾

function of relaxation time, and  is inductance. In the deep-DRT framework, two deep neural 𝐿0

networks, i.e., the net and the RL net were constructed, as illustrated in Figure S4. 𝛾 ‒ ‒

Following the definition in deep-DRT, the experimental impedance at one frequency point, 

, can be re-written as , where  represents the state variables, e.g., temperature 𝑍𝑒𝑥𝑝(𝑓) 𝑍𝑒𝑥𝑝(𝑓,𝜓) 𝜓

, pressure , materials (for fuel cell,  can be ). It was assumed that both  and  in 𝑇 𝑝 𝜓 [𝑇,𝑝O2
]⊤

𝑅∞ 𝐿0

(1) are only dependent on the state variables , i.e., , , whereas the DRT, 𝜓 𝑅∞ = 𝑅∞(𝜓) 𝐿0 = 𝐿0(𝜓)

, is a function of both timescale  and  as , as demonstrated in Figure S4. As a 𝛾 𝜏 𝜓 𝛾 = 𝛾(log 𝜏,𝜓)

result, the impedance by deep-DRT, , in the vector form, can be written as𝑍𝐷𝑅𝑇(𝑓, 𝜓)

𝑍𝐷𝑅𝑇(𝑓, 𝜓) = 𝑖2𝜋𝐿0(𝜓)𝑓 + 𝑅∞(𝜓)1 + 𝐴 𝛾(log 𝜏, 𝜓) (2)

where  is the impedance vector calculated by 𝑍𝐷𝑅𝑇(𝑓, 𝜓) = [𝑍𝐷𝑅𝑇(𝑓1,𝜓), 𝑍𝐷𝑅𝑇(𝑓2,𝜓), …,𝑍𝐷𝑅𝑇(𝑓𝑀,𝜓)]⊤

DRT formula at  and ; ; 𝑓 = [𝑓1,𝑓2 , …,𝑓𝑀]⊤
𝜓 𝛾(log 𝜏,𝜓) = [𝛾(log 𝜏1,𝜓), 𝛾(log 𝜏2,𝜓), …,𝛾(log 𝜏𝑁,𝜓)]⊤

; and , with  and  defined elsewhere1, 2. For a 1 = [1, 1,…, 1]⊤ ∈ 𝑅𝑀  𝐴 = 𝐴𝑟𝑒 + 𝑖𝐴𝑖𝑚 𝐴𝑟𝑒 𝐴𝑖𝑚 ∈ 𝑅𝑀 × 𝑁

detailed derivation of the above equation, one is encouraged to read the published work3. 

Finally, the parameters of the deep-DRT network are optimized by minimizing the loss 

function, or the mean squared error (MSE), defined as

𝐿(𝜃𝑅𝐿,𝜃𝛾) =
1
𝐾

𝐾

∑
𝑘 = 1

‖𝑍𝑒𝑥𝑝(𝑓,𝜓𝑘) ‒ 𝑖2𝜋𝐿0,  𝐷𝑁𝑁(𝜓𝑘,𝜃𝑅𝐿) 𝑓 ‒ 𝑅∞,  𝐷𝑁𝑁(𝜓𝑘,𝜃𝑅𝐿)1 ‒ 𝐴 𝛾𝐷𝑁𝑁(log 𝜏,𝜓𝑘,𝜃𝛾)‖2
2 (3)
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where  represents the state variables for -th experiment,  is the total number of experiments 𝜓𝑘 𝑘 𝐾

for training,  and  are the outputs of RL-net with -th experimental 𝐿0,  𝐷𝑁𝑁(𝜓𝑘,𝜃𝑅𝐿) 𝑅∞,  𝐷𝑁𝑁(𝜓𝑘,𝜃𝑅𝐿) 𝑘

input,  is the output of net with -th experimental input,  and  are the 𝛾𝐷𝑁𝑁(log 𝜏,𝜓𝑘,𝜃𝛾) 𝛾 ‒ 𝑘 𝜃𝑅𝐿 𝜃𝛾

network parameters of RL-net and net, respectively.𝛾 ‒

To construct the state variables  for each experiment, we included three key components, i.e., 𝜓

temperature , time , and the feature of transition metal element substitute . To be specific, 𝑇 𝑡 𝑒

the  is constructed as , where , and  are normalized features of  and ,  is 𝜓 𝜓 = [𝜓𝑇,𝜓𝑡,𝜓𝑒]⊤ 𝜓𝑇 𝜓𝑡 𝑇 𝑡 𝜓𝑒

the elemental embedding. Here, we only use the feature of transition metal M to represent the 

cathode material. In particular,  is a vector with 16 entries from the MEGNet4. Besides, the  𝑒 𝑇

and  are normalized to be in the range of . All other settings are consistent with the one 𝑡 [0,1]

implemented in deep-DRT3 except for the number of hidden layers in this work is 3 for both 

net and RL net. The loss, or MSEs of the training dataset and validation dataset as a 𝛾 ‒ ‒

function of iteration numbers are shown in Figure S5. The MSEs of the training and validation 

datasets become stable after around 40,000 iterations. Additionally, no overfitting was 

observed. As a result, we will use the model after 50,000 iterations to predict the EIS spectrum 

as well as their corresponding DRT. The selected results for the test dataset are shown in Figure 

S6. Here we randomly show 2 cases to observe the model performance on unseen EIS spectra. 

The model can well predict the EIS response for different cathode materials at different 

temperatures and different measuring times. Considering that the EIS measurements are done 

for a variety of cathode materials, spanning a wide period, we believe such a model can work 

successfully to predict the EIS measurement under such a situation.

We notice that the predicted DRT for each spectrum consists of only one main peak, which may 

deviate from reality. To further improve the model performance, we would like to use the deep-

DRT to predict the relative DRT rather than the true one. In specific, we will first obtain the 

DRT using DRTTools5, and use the deep-DRT to predict the coefficient with respect to the one 
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from DRTTools. In detail, the pre-DRT is obtained by ridge regression (RR) as implemented 

in DRTTools using piece-wise linear basis functions together with the 2nd derivative. Later, the 

deep-DRT outputs the relative values. Hence, the final impedance by DRT is expressed as 

𝑍𝐷𝑅𝑇(𝑓, 𝜓) = 𝑖2𝜋𝐿0,  𝐷𝑁𝑁(𝜓,𝜃𝑅𝐿)𝐿0,  𝑅𝑅𝑓 ‒ 𝑅∞,  𝐷𝑁𝑁(𝜓,𝜃𝑅𝐿)𝑅∞,  𝑅𝑅1 ‒ 𝐴 𝛾𝐷𝑁𝑁(log 𝜏,𝜓,𝜃𝛾) ⊗ 𝛾𝑅𝑅 (4)

where  denotes the element-wise multiplication for two vectors, , , and  are ⊗ 𝐿0,  𝑅𝑅 𝑅∞,  𝑅𝑅 𝛾𝑅𝑅

obtained from DRTTools. One should note that the , , and  now represent the 𝐿0,  𝐷𝑁𝑁 𝑅∞,  𝐷𝑁𝑁 𝛾𝐷𝑁𝑁

relative values with respect to the ones obtained by RR. Based on the pre-trained DRT, the 

losses of both the training dataset and validation dataset drop significantly. The MSEs as a 

function of iterations are shown in Figure S7. As we can notice, the absolute values of MSEs at 

the initial iteration are much smaller in comparison to the model from scratch. This is mainly 

attributed to the well-behaved DRT by ridge regression. Furthermore, we notice that the MSEs 

become stable only after 10,000 iterations, a shorter period than the 50,000 iterations needed 

for the previous model. Finally, the stable MSEs are much smaller than the ones for the model 

from scratch, implying that the pre-training with ridge-regression helps improve the model 

performance further. This suggests that the ridge-regression can benefit the model convergence 

as well as model performance.

The code was implemented using the Pytorch 6 The activation functions were chosen to be non-

saturating exponential linear (ELU) units7 for the first three layers and softplus for the last layer. 

The weights and biases were initialized using the Xavier uniform method8 and to zero, 

respectively. Furthermore, the parameters of the network  were optimized using the Adam 𝜃

algorithm9 with a learning rate of 10-5 and a maximum of 50,000 iterations. The structure of 

deep-DRT in this work is slightly different from the one published3. The number of hidden 

layers in this work was set to 3 rather than 5. This was verified by comparing the final MSE 

with different hidden layers after fixed iterations (50,000) with identical settings.
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As explained in the main text, we used only the transition metal M to represent the cathode 

material. The transition metal element was assigned with a vector with 16 entries obtained from 

the MEGNet.4 It was demonstrated that the elemental embeddings show good behavior in 

differentiating the elements in the periodic table. For temperature and time encoding, the real 

values were normalized into the range of  following[0,1]

𝜓𝑇 =
𝑇𝑚𝑎𝑥 ‒ 𝑇

𝑇𝑚𝑎𝑥 ‒ 𝑇𝑚𝑖𝑛
(5)

𝜓𝑡 =
𝑡

𝑡𝑙𝑎𝑠𝑡 ‒ 𝑡0
(6)

For one example, the state variable  for SrFe0.75M0.25O3-δ (M = Co) at 700 ℃, 24 h is 𝜓

represented as , where  is the embedding array of Co with 16 𝜓 = [𝜓𝑇,𝜓𝑡,𝜓𝑒]⊤ = [1.0, 0.25, 𝜓Co]⊤ 𝜓Co

entries.

For the DRT calculations, the  vector is evaluated between the 10-7 s and 103 s with 301 𝛾

equispaced data points in the log-scale, i.e., the  vector has a length of 301. To keep consistent 𝜏

with the other input features, the  was normalized between  bylog 𝜏𝑘 [ ‒ 1,1]

log 𝜏𝑘: =‒ 1 + 2
log 𝜏𝑘 ‒ min (log 𝜏𝑘)

max (log 𝜏𝑘) ‒ min (log 𝜏𝑘) (7)

Specifically, we predict the latent  vector by predicting each  at the timescale of . 𝛾 𝛾𝑘 log 𝜏𝑘
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Figure S1. XRD pattern of SrFe0.75M0.25O3-δ -Cr mixed and sintered at 700, 750, 800 oC for 5 

hours. M= (a) Co, (b) Fe, (c) Mn, (d) Mo, (e) Nb and (f) Ni.
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Figure S2. SEM images of SrFe0.75M0.25O3-δ, M= (a) Co, (b) Fe, (c) Mn, (d) Mo, (e) Nb and (f) 

Ni.
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Figure S3. SEM images of SrFe0.75M0.25O3-δ after 96 h Cr deposition and poisoning test, M= 

(a) Co (b) Fe, (c) Mn, (d) Mo, (e) Nb and (f) Ni.
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Figure S4. Schematic illustration of deep-DRT network structure. Two deep neural networks 

are constructed: the upper one is net, and the lower one is RL net. The net takes the 𝛾 ‒ ‒ 𝛾 ‒

inputs of parameters combining  and state variables  and outputs the DRT at the log (𝜏) 𝜓

timescale . The RL net takes only the state variables  as input and outputs the  and .𝜏 ‒ 𝜓 𝑅∞ 𝐿0

Figure S5. MSE of training and validation datasets as a function of the iteration numbers.
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Figure S6. Nyquist plot of the EIS response of (a) Fe-800-48 and (b) Mn-800-60. The 

experimental results are labeled with dots while the predicted values by DRT are labeled in 

lines. (c) and (d) correspond to the predicted DRT using the gamma-net for (b) Fe-800-48, and 

(d) Mn-800-60, respectively.

 
Figure S7. MSE of training and validation datasets as a function of the iteration numbers for 

the model with pretrained DRT by ridge regression.
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Figure S8. EIS response of SFMO/LSGM/SFMO (M=(a) Co, (b) Fe, (c) Mn, (d) Mo, (e) Nb 

and (f) Ni) at 700C. The experimental results are labeled with dots while the simulated values 

by deep-DRT are labeled in color lines.
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Figu

re S9. EIS response of SFMO/LSGM/SFMO (M=(a) Co, (b) Fe, (c) Mn, (d) Mo, (e) Nb and (f) 

Ni) at 750C. The experimental results are labeled with dots while the simulated values by 

deep-DRT are labeled in color lines.



13

Figure S10. EIS response of SFMO/LSGM/SFMO (M=(a) Co, (b) Fe, (c) Mn, (d) Mo, (e) Nb 

and (f) Ni) at 800C. The experimental results are labeled with dots while the simulated values 

by deep-DRT are labeled in color lines.
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Figure S11. (a) Nyquist plots of the EIS response of SrFe0.75Co0.25O3- (SFCO)/LSGM/SFCO 

tested at 700°C for 156 h without Cr source and (b) with Cr source; (c) The proportion of the 

Rp increase calculated by the data from (a) and (b).

Figure S12 (a) The EIS of SrFe0.75Mn0.25O3-/LSGM/SrFe0.75Mn0.25O3- at 800°C (calculated 

by Kramers-Kronig (dots) and the experimental data (solid lines)), (b) Kramers-Kronig test 

analysis of SrFe0.75Mn0.25O3-/LSGM/SrFe0.75Mn0.25O3- at 800°C for 60 h
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Figure S13. (a) Nyquist plot of the EIS response of SFCO/LSGM/SFCO tested at 750°C for 96 

hours. (b) the relative changes (in percentage) of  Rp and Ro as a function of elapsed testing 

time.

Table S1. Common chromium containing interconnect materials and their chromium weight 

percentages10.

Material Name Weight % Cr

Crofer22 APU 23

Crofer22 H 20-24

SUS430 Nisshin Steel Co. Ltd. 16.03

430SS 17

SUS420 Nippon Steel Corp., Japan 16-18

Ducrolloy (Cr5Fe1Y2O3) 94

Inconel 600 16

RA446 23-27

ZMG232 Hitachi Metals Co. Ltd. 22

17-4 PH SS 15.21

E-Brite 26

RA600 14-17

FeCM 16.65

ITM/ITM-14 26
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