Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

High-loading Fe₁ sites on vanadium disulfides: a scalable and non-defect-stabilized single atom catalyst for electrochemical nitrogen reduction

Yunxia Liu,^a Xing Fan,^a Wenyi Bian,^a Yingke Yang,^a Peipei Huang,^b Werner A Hofer,^c Hui Huang, ^{a*} Haiping Lin,^{b*} Youyong Li^{a,d*} and Shuit-Tong Lee^{a,d}

^aInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based

Functional Materials and Devices, Soochow University, Suzhou 215123, China.

^bSchool of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.

^cUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.

^dMacao Institute of Materials Science and Engineering, Macau University of Science and Technology,

Taipa 999078, Macau SAR, China

*Corresponding authors: hhuang0618@suda.edu.cn, hplin@snnu.edu.cn, and yyli@suda.edu.cn

1. Fe adsorption on a VS₂ monolayer.

There are three possible high symmetry adsorption sites for Fe atoms on a VS₂ monolayer, namely the TV, TS, and HH sites (on-top site of a V atom, on-top of a S atom and at the three-fold hollow site). In our simulations we considered a 4×4 supercell of VS₂ monolayer to minimize interactions between Fe atoms in the periodic supercell. The adsorption configurations of single Fe atom on these possible adsorption sites as well as the relevant adsorption energies are shown in Fig. S1. The adsorption energies (^{E}ads) of single Fe atoms on the VS₂ monolayer were calculated with the equation:

$$E_{ads} = E_{adsorbed} - E_{VS2} - E_{Fe} \tag{S1}$$

We find that the HH site is energetically the most favorable.

Fig. S1 (a) The on-top site of S, on-top site of V, and the hollow site is referred to as "TS", "TV" and "HH", respectively. (b-c) shows adsorption structures and corresponding adsorption energies of the Fe atom on these sites. The Fe atom initially at the "TS" site moved to the "TV" site upon structural relaxation. The yellow, green and orange balls represent S, V and Fe atoms, respectively.

2. Thermal stability of Fe₁/VS₂.

First-principles molecular dynamics calculations have been performed to investigate the thermal stability of the Fe_1/VS_2 catalysts. Figure S2 shows the root-mean-square deviation of the single Fe atom on a VS₂ monolayer at 300 K and 400 K. The RMSD curves with respect to the simulation time show that Fe_1/VS_2 reaches stable equilibrium after 300 femtoseconds. As the maximum RMSD of Fe_1/VS_2 at 300 K and 400 K are only 0.145 Å and 0.157 Å, the atomic structures should not change significantly, indicating good thermal stability for temperatures as high as 400K.

Fig. S2 Molecular dynamics simulation and analysis of the Fe_1/VS_2 in root-mean-square deviations (RMSD) at 300 K (green) and 400K (blue).

3. The diffusion of Fe atom on the VS_2 monolayer.

DFT calculation shows that the diffusion barrier of the Fe atom on a VS_2 surface is about 0.99 eV, indicating a very low probability of clustering of Fe atoms at ambient conditions.

Fig. S3 The energy profile of the Fe diffusion on the VS_2 surface.

4. Configurations of Fe dimer and two Fe atoms adsorbed on the VS₂ monolayer.

Fig. S4 Atomic configurations of (a) a Fe dimer and (b) two Fe atoms adsorbed on a VS_2 monolayer. The yellow, green and orange balls represent S, V and Fe atoms, respectively.

The averaged adsorption energy per Fe atom in the Fe dimer is -3.16 eV, which is much higher than that of two adjacent HH site Fe atoms (-4.13 eV, Fig. 1(b)). Such significant increase of energies indicates that the Fe dimmer is not likely to form during Fe diffusion.

5. The atomic adsorption energies of Fe at different coverages.

Fig. S5 The atomic adsorption energy of Fe_1/VS_2 with respect to Fe coverages. The averaged adsorption energies per Fe atom at different Fe coverages are shown as squares. Error bars are employed to indicate the range of adsorption energies per Fe atom at given Fe coverages.

Fig. S6 Configurations and corresponding adsorption energies of different Fe coverages on non-defective VS₂.

6. PDOS plots of N_2 adsorption on the Fe₁/VS₂.

Fig. S7 The PDOS of the N_2 in vacuum (black), N_2 in N_2 -Fe₁/VS₂ (cyan), Fe in Fe₁/VS₂ (blue) and Fe in N_2 -Fe₁/VS₂ (red).

N ₂ -end-on	1H	2H	ЗH	4H	5H	6H	
	NH N Fe	NH ₂ N Fe	NH ₃ : N Fe	NH Fe	NH ₂ Fe	NH ₃ : Fe	
		0.21 eV	0.90 eV	1.11 eV	−0.12 eV	-2.04 eV	
N N Fe		NH NH Fe	NH ₂ NH Fe	NH ₃ :. NH Fe	NH ₃ : NH ₂ Fe		
-0.15 eV	0.54 eV	0.62 eV	−0.67 eV	0.38 eV			
	$ \begin{array}{ccc} N & N = NH \\ = & \swarrow \\ NH \rightarrow Fe \\ - \\ Fe \end{array} $	$ \begin{array}{c c} N & N \cdots NH_2 \\ & \swarrow \\ NH_2 \rightarrow Fe \\ \\ Fe \end{array} $	$ \begin{array}{c} NHHN-NH_{2}\\ & \bigvee\\ NH_{2}-Fe\\ \\ Fe \end{array} \end{array} $	$\begin{array}{ccc} \operatorname{NH}_2 & \operatorname{NH}_3 \\ & & \vdots \\ \operatorname{NH}_2 \longrightarrow & \operatorname{NH} \\ & & \\ \operatorname{Fe} & & \operatorname{Fe} \end{array}$			
	0.72 eV	1.67 eV	-0.37 eV	0.38 eV	-1.30 eV		
$N_2^{-side-on}$	1H	2H	ЗH	4H	5H	6H	
N≡N V Fe 0.89 eV	N=NH V Fe	HN=NH V Fe	$\overset{\rm HN-\rm NH_2}{\underset{\rm Fe}{\bigvee}}$	$\overset{H_2N\cdotsNH_2}{\underset{Fe}{\bigvee}}$	H₂N ··· NH₃ ∖∵ Fe	NH ₃ : Fe	
		0.97 eV	-0.37 eV	-0.39 eV			
		N…NH ₂ V Fe	NNH₃ ∖.: Fe	HNNH₃ ∖.: Fe			
	0.72 eV	1.67 eV	0.13 eV	-0.16 eV	-2.06 eV	-2.04 eV	

7. The evolution of Gibbs free energies along various reaction pathways.

Fig. S8 The structures and changes of Gibbs free-energies of various potential intermediates along the reaction path of NRR on the Fe_1/VS_2 .

8. Competitive HER side reaction.

To perform well as an electrochemical catalyst, the Fe_1/VS_2 system must be stable in a proton-rich solution which is different from the typical Haber-Bosch process. In the proton-rich solution, the Fe_1/VS_2 may be poisoned by hydrogen in an acidic solution before N_2 molecules can bind to the catalyst. It is therefore necessary to examine the effect of hydrogen for Fe_1/VS_2 . Under the electrochemical conditions for an NRR electrons will be injected into Fe_1/VS_2 ; as a result, positively charged protons will be attracted and can combine with electrons to form adsorbed hydrogen. A 4x4 VS₂ supercell was simulated to investigate the effect of proton attachment for NRR. The results indicate that the H atom has only weak interaction with the Fe_1/VS_2 surface due to positive Gibbs freeenergies. A H atom adsorbed on the Fe atom has a Gibbs free energy of +1.04 eV (Fig. S9a) and surrounding the Fe atom of +0.54 eV (Fig. S9b). The results allow the conclusion that the active Fe_1/VS_2 center will not be rapidly covered by hydrogen under electrochemical condition. This outcome has a similar cause as the strong repulsion between single adsorbed Fe atoms on this surface, the positive charging upon adsorption. Additional simulations of H surrounding the N₂-Fe₁/VS₂, with a Gibbs free energy of +0.44 eV (Fig. S9c) lead to the same conclusion. Hydrogen poisoning for this catalyst is therefore not a concern. The catalytic inertness of base planes toward HER have also been reported in other MS₂ materials.^{1, 2}

Fig. S9 The change of Gibbs free energy upon H adsorption (a) on the Fe atom of Fe_1/VS_2 , (b) on one of the three S atoms that are next to the bare Fe atom, and (c) on one of the three S atoms surrounding the N_2 adsorbed Fe atom. The change of Gibbs free energy per H adsorption is 1.04 eV, 0.54 eV and 0.44 eV, respectively.

9. Solvent effect.

Eight H₂O molecules and a N₂ molecule were added to a 4x4 Fe₁/VS₂ supercell in order to evaluate the bonding of N₂ and H₂O on Fe₁/VS₂. In Fig. S10(a), all H₂O molecules are close to the Fe atom while the N₂ molecule was far away from Fe. Moreover, the N₂ molecule is moved close to Fe site and be surrounded with H₂O molecules in the Fig. S10(b). As seen in Fig. S10, the total energy decreased by 0.12 eV ($E_b - E_a$) when N₂ takes the place of an adsorbed H₂O. Therefore, the N₂ molecule would be preferable than H₂O on Fe₁/VS₂, namely water molecules would not block the catalytic site.

Fig. S10 Atomic configurations of the Fe single atom site covered with 8 H_2O and 1 N_2 molecules. (a) All H_2O molecules are close to the Fe atom while the N_2 molecule was far away from Fe. (b) The N_2 molecule is moved close to Fe.

Fig. S11 The DOS plot of a VS_2 monolayer.

11. The loading of metals in recently reported Fe SACs.

Fig. S12 Comparison of Fe loading between Fe₁/VS₂ and recently reported Fe single-atom catalysts.

12. Table S1. Comparison of Fe loading between Fe₁/VS₂ and recently reported Fe singleatom catalyst.

Materials Loading [ICP] Ref.	Materials	Loading [ICP]	Ref.
------------------------------	-----------	---------------	------

Fe ₁ /VS ₂	5.1 wt% (calculated)	This work
SA Fe-g-C ₃ N ₄	4.07 wt%	Chem. Eng. J, 2022, 427,130803
Fe SA/NPCs	2.17 wt%	Small, 2022, 18, 2104941
Fe SAC-MOF-5	2.35 wt%	Adv. Energy Mater., 2022, 12, 2102688
Fe-N-C SACs	0.65 wt%	Chem. Eng. J, 2022, 430, 132882
Fe-N-C	1.3 wt%	Angew. Chem. Int. Ed., 2021,60, 25296 –25301
Meso-Fe–N–C	2.9 wt%	J. Mater. Chem. A, 2021,9, 19489-19507
Fe-SAC/NPC	0.4 wt%	Angew. Chem. Int. Ed., 2021,60, 23614 –23618
Co ₂ /Fe–N@CHC	0.98 wt%	Adv.Mater., 2021, 33, 2104718
Fe/NC	2.9 wt%	Small Methods, 2021, 5, 2001165
Bi ₄ O ₅ I ₂ –Fe30	1.09 wt%	ACS Materials Lett., 2021, 3, 4, 364–371
Fe ₁ /CN	11.2 wt%	Angew. Chem. Int. Ed., 2021,60, 21751 –21755
SAFe@NG	3.7 wt%	Adv. Mater. 2021, 33, 2007090
Fe _{SA} -NO-C-900	0.78 wt%	Angew. Chem. Int. Ed. 2021, 60, 9078 –9085
HSAC/Fe-4	3.37 wt%	<i>Adv. Sci.</i> 2021, 8, 2002249
Fe–N–C	0.93 wt%	J. Energy Chem. 2021, 54, 579–586
Fe-C/Al ₂ O ₃	1.16 wt%	Sep. Purif. Technol. 2021, 54, 258118086
Fe ₁ /N-DG	2.77 wt%	J. Hazard. Mater. 2021, 412, 125162
Fe _{SA} -N-C	3.46 wt%	Nat. Commun. 2020, 11, 2831.
Fe ₁ /C-PPh ₃ /NaI	0.5 wt%	ACS Catal. 2020, 10, 5502-5510.
Fe SA/NPCs	2.17 wt%	Appl. Catal. B 2020, 278, 119270.
Fe-NC SAC	1.5 wt%	J. Mater. Chem. A 2020, 8, 9981.
FeN ₅ SA/CNF	1.2 wt%	Sci. Adv. 2019, 5, eaav5490.
Fe ³⁺ –N–C	2.8 wt%	Science 2019 , 364, 1091–1094.
TPI@Z8(SiO ₂)-650-C	2.78 wt%	Nat. Catal. 2019, 2, 259.
Fe _{SA} -N-C	1.09 wt%	Nat. Commun. 2019, 10, 341.
Fe-N-C HNSs	1.4 wt%	Adv. Mater. 2019, 31, 1806312.
FeSA-G	7.7 wt%	Adv. Sci. 2019, 6, 1802066.
Fe-N/C-CNTs	0.50 wt%	ACS Catal. 2019, 9, 336.
Fe SAs/N-C	3.5 wt%	ACS Catal. 2019, 9, 2158-2163.
Fe-NC SAC	8.9 wt%	Nat. Commun. 2019, 10, 1278.
Fe-NHGF	0.2 wt%	Nat. Catal. 2018, 1, 63.
Fe-SAs/NPS-HC	1.54 wt%	Nat. Commun. 2018, 9, 5422.
Fe SAs-N/C-20	0.20 wt%	J. Am. Chem. Soc. 2018, 140, 11594.
FeN ₄ /GN	4.0 wt%	<i>Chem</i> 2018 , <i>4</i> , 1902.
Fe-N ₄ SAs/NPC	1.96 wt%	Angew. Chem. Int. Ed. 2018, 57, 8614.
FeSA-N-C	1.76 wt%	Angew. Chem. Int. Ed. 2018, 57, 8525.

Fe-ISA/SNC	0.95 wt%	Adv. Mater. 2018, 30, 1800588.
NDC-900	0.46 wt%	Adv. Energy Mater. 2018, 8, 1701771.
FeSAs/PTF	8.3 wt%	ACS Energy Lett. 2018, 3, 883.
FeCl1N4/CNS	1.5 wt%	Energy Environ. Sci. 2018, 11, 2348.
Fe-N-C-950	0.32 wt%	ACS Catal. 2018, 8, 2824.
Fe-N/C-1/30	3.8 wt%	Nano Energy 2018 , <i>52</i> , 29-37.
Fe-N-C	0.91 wt%	Small 2018, 14, 1704282.
ISA Fe/CN	2.16 wt%	Angew. Chem. Int. Ed. 2017, 56, 6937.
NDC-900	0.18 wt%	Adv. Energy Mater. 2017, 8, 1701771.
Fe-N-C-600	1.8 wt%	J. Am. Chem. Soc. 2017, 139, 10790.
SA-Fe/CN.	0.9 wt%	J. Am. Chem. Soc. 2017, 139, 10976.
Fe©N-C-12	0.37 wt%	ACS Catal. 2017, 7, 7638.
C-AFC©ZIF-8	0.64 wt%	Nano Energy 2017 , <i>38</i> , 281.
FePhenMOF-ArNH ₃	0.5 wt%	Energy Environ. Sci. 2016, 9, 2418.

13. Table S2. Magnetic moments of Fe during the NRR process.

0.008

	Distal pathway		$\mu_{\rm B}$ (Fe)($\mu_{\rm B}$)		Alternating pathway		$\mu_{\rm B}$ (Fe)($\mu_{\rm B}$)	
	00-N ₂ -end-on		2.799		00-N ₂ -end-on		2.799	
	01-N-NH		1.566		01-N-NH		1.566	
	02-N-NH ₂ 03-N-NH ₃ 04-NH 05-NH ₂ 06-NH ₃		2.155		02-NH-NH		2.833	
			0.812		03-NH-NH ₂		2.726	
			1.698 3.083 0.008		04-NH-NH ₃ 05-NH ₂ -NH ₃ 06-NH ₃		1.854 2.750 0.008	
Enzymatic pathway		$\mu_{\rm B}$ (Fe)($\mu_{\rm B}$)		Hybrid pathway		$\mu_{\rm B}$ (Fe)($\mu_{\rm B}$)		
00-N ₂ -side-on		2.226		00-N ₂ -end-on		2.799		
01-NH-N		2.319		01-N-NH		1.566		
02-NH-NH		-0.305		02-N-NH ₂		2.155		
03-NH ₂ -NH		2.334		03-NH-NH ₂		2.726		
04-NH ₂ -NH ₂		2.446		04-NH ₂ -NH ₂		2.446		
05-NH ₃ -NH ₂		2.241		05-NH ₃ -NH ₂		2.241		

References

06-NH₃

1. J. Xu, G. Shao, X. Tang, F. Lv, H. Xiang, C. Jing, S. Liu, S. Dai, Y. Li, J. Luo and Z. Zhou, *Nat. Commun.*, 2022, **13**, 2193.

06-NH₃

0.008

2. J. Zhang, C. Zhang, Z. Wang, J. Zhu, Z. Wen, X. Zhao, X. Zhang, J. Xu and Z. Lu, Small, 2018, 14, 1703098.