Supporting Information

Vacancy-Modified Few-layered GaN Crystal for Novel High-Temperature Energy Storage

Songyang Lv^a, Shouzhi Wang^{*,a}, Tailin Wang^b, Lei Liu^a, Jiaoxian Yu^b, Tianran Dong^a Guodong Wang^{*,a}, Zhongxin Wang^a, Chang Liang^a, Lili Li^{*,c}, Xiangang Xu^a, Lei Zhang^{*,a}

^aInstitute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.

^bKey Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.

^cKey Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.

*E-mail: wangsz@sdu.edu.cn; guodong9631@sdu.edu.cn; lilili@sinap.ac.cn leizhang528@sdu.edu.cn.

This file includes:

- S1. Materials
- S2. Theoretical calculation
- **S3.** Characterization Methods
- S4. Electrochemical Measurements.
- **S5.** Calculation of Capacitance Contribution
- S6. Supplementary Figures S1–S20
- S7. Table S1–S5

S1. Materials

Reagents were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai). All the reagents were used as received.

S2. Theoretical calculation method

The present calculations were carried out by Vienna Ab initio Simulation Package (VASP) [1,2] implementation of DFT in conjunction with the projector augmented wave (PAW) formalism. Consequently, the H $1s^1$, C $2s^22p^2$, N $2s^22p^3$, O $2s^22p^4$, F $2s^22p^5$, S $3s^23p^4$, and Ga $4s^2$, $3d^{10}$, $4p^1$ states are treated as valence electrons. The electronic wave functions were expanded in plane waves using an energy cut off of 500 eV. The convergence criteria of force and energy for the structural relaxation were set at 0.01 eV/Å and 10^{-5} eV. The lattice parameters of primitive hexagonal GaN were a=b=3.19 Å, c=5.19 Å after optimization. Then constructed the 2 \times 2 \times 2 supercells to model nitrogen vacancy defect (V_N@GaN), as shown in Figure S16. The electron exchange and correlation (XC) of the generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE) were used to optimize the configurations^[3]. All the electronic properties of GaN and $V_N@GaN$ were determined using the screened Heyde-Scuseriae-Ernzerhof (HSE) hybrid functional^[4,5]. In this approach, the long-range exchange potential and the correlation potential were calculated with the PBE functional, while the short-range exchange potential was calculated by mixing a fraction of the non-local Hartreee-Fock exchange with PBE. The screening length and mixing parameter were fixed at 10 Å and 0.25, respectively. Monkhorst-Pack k-points^[6] were sampled using a $4 \times 4 \times 4$ for

the relaxation and total energy and electronic calculations.

Each adsorption model is allowed to interact with $C_6H_{11}N_2 \cdot C_2F_6NO_4S_2$ (EMImNFT₂) and the adsorption energy (E_{ad}) for species X is defined as follows:

$$E_{ad} = E \text{ (surface/X)} - E \text{ (surface)} - E \text{ (X)}$$

where E(surface/X) is the total energy of the fully relaxed surface/adsorbate system, E(surface) is the total energy of the relaxed substrate slab, and E(X) is the total energy of a free adsorbate species (EMImNFT₂). Negative adsorption energy means effective adsorbate binding.

S3. Characterization Methods

The morphology of the as-collected samples was characterized by investigated by SEM (Hitachi S-4800), TEM (Philips Tecnai 20U-Twin), HRTEM (JEM 2100F), AFM (Nanoscope MultiMode V, Digital Instruments Dimension 3100 system). The crystal structures were obtained by XRD (Bruker diffractometer D8 Advance, Cu Ka radiation, $\lambda = 1.5418$ Å), XPS (Thermo ESCALAB 250 Al Ka radiation, 1486.8 eV), BET (ASAP 2020 sorptometer), PSD (BJH desorption dV/dlog(r) plot volume), Raman (Horiba Jobin Yvon with Ar⁺ laser 532 nm), PL (at room temperature using 325 nm He–Cd lasers as the excitation source), EPR (JEOL (FA200), at X-band (≈ 9 GHz) at 123.15 K).

To measurement the conductivity of the samples, GaN-2.5h samples were dispersed in ethanol by a sonication process. The mixture was then dropped onto Si substrate with a 300-nm-thick SiO₂ layer. Prior to the photolithography process, the SiO₂/Si substrate was cleaned by dilute hydrofluoric acid (HF), dilute hydrochloric

acid (HCl), ethanol and deionized water. A typical photolithography process was used to print electrodes on top of nanosheets.

Electrical contact to the GaN-2.5h samples were made by defining source-drain electrodes separated by ~1000 nm with lithography technology (SUSS MicroTec MBJ4) and subsequent evaporation of 50 nm Ti and 50 nm Au. Rapid thermal annealing was carried out at 500 °C for 3 min in the forming gas (10% H₂ in He) to improve the contact and passivate Si-SiO_x interface traps.1 The Ti/Au (30/50 nm) electrodes can maintain a good contact interface with nanosheet.

S4. Electrochemical Measurements.

Electrochemical performance tests were performed with the CHI660E electrochemical workstation. For the three-electrode test system with few-layer GaN crystal as the working electrode (The area of active material on the stainless-steel cloth was 1.5 cm², and the mass loading was about 1 mg cm⁻²), a platinum plate as the counter electrode, Ag/AgCl as the reference electrode and in the electrolyte of 2M KCl solution. The CV and GCD curves were carried out in -0.3 V to 0.7 V under 25°C. In two-electrode measurements, the CV and GCD test data was collected at 0–2.7 V range from 25 °C to 150 °C. The alternating current (AC) EIS spectrum was acquired range from 10^{-2} Hz to 10^{5} Hz at an open circuit voltage with an AC amplitude of 0.005V. Mott-Schottky (M-S) for the measured frequency of 973Hz.

The area specific capacity of the electrodes in three-electrode test system, is derived from the GCD curve, calculated according to equation 1.

$$C = \frac{I\Delta t}{S\Delta V}$$

Where C is the specific capacitance (F cm⁻²) base on the area of the electrode materials, I is the discharge current (A), Δt is the discharge time (s), S is the area (cm²) of the active materials of the single electrode, ΔV is the working voltage window (V).

The area specific capacitance for IL-based SC device is calculated from equation

2

$$C = \frac{I\Delta t}{S\Delta V}$$

Where C is the area specific capacitance (F cm⁻²) of the IL-based SC device, I is the discharge current (A), Δt is the discharge time (s), S is the total area (cm²) of active material on the IL-based SC device, ΔV is the working voltage window (V).

The energy density of the IL-based SC device is calculated by equation 3

$$E = \frac{1}{2}C\Delta V^2$$

Where E is the energy density (mWh cm⁻²) of the device, C is the area specific capacitance (mF cm⁻²) of IL-based SC device, ΔV is the working voltage window (V).

The power density of the IL-based SC device is calculated by equation 4

$$P = \frac{E}{\Delta t}$$

Where P is the power density (mW cm⁻²) of the device, E is the energy density (mWh cm⁻²), Δt is the discharge time (s).

According to the M-S theory, the calculated electron concentration, was derived from equation 5

$$\frac{1}{C_s^2} = \frac{2}{(\varepsilon \varepsilon_0 e_0 N_d)} (U - U_{fb} - \frac{\kappa_B T}{e_0})$$

Where C_s is the space charge capacitance per unit area (F cm⁻²), N_d is the electron concentration (cm⁻³), ε is the dielectric constant, ε_0 is the permittivity of vacuum (F m⁻¹), e_0 is the electron charge (C), U is the applied potential (V), $U_{\rm fb}$ is the flat band potential (V), T is the temperature (K), and κ_B is the Boltzmann constant (J K⁻¹).

S5. Calculation of Capacitance Contribution

Equation 6

$$i(V) = k_1 v + k_2 v^{\frac{1}{2}}$$

We are interested in the percentage of the capacitive current.

S6. Supplementary Figures S1-S20

Figure S1. The SEM image of GaN crystal under different preparation time.

GaN-1h (a); GaN-2.5h (b) and GaN-3h (c).

Figure S2. The XPS survey of few-layered GaN-2.5h crystal.

Figure S3. Three-electrode EIS tests. Nyquist plots of GaN raw, GaN-1h, GaN-2.5h

and GaN-3h electrode.

Figure S4. Three-electrode electrochemical performance of GaN raw. CV profiles of the electrode at scan rates ranging from 20 mV s⁻¹ to 100 mV s⁻¹ (a); from 200 mV s⁻¹ to 2,000 mV s⁻¹ (b) and from 5,000 mV s⁻¹ to 50,000 mV s⁻¹ (c); corresponding GCD curves, operated with current densities ranging from 0.1 mA cm⁻² to 2 mA cm⁻². (d).

Figure S5. Three-electrode electrochemical performance of GaN-1h. CV profiles of the electrode at scan rates ranging from 50 mV s⁻¹ to 100 mV s⁻¹ (a); from 200 mV s⁻¹ to 2,000 mV s⁻¹ (b) and from 5,000 mV s⁻¹ to 50,000 mV s⁻¹ (c); corresponding GCD curves, operated with current densities ranging from 0.5 mA cm⁻² to 5 mA cm⁻² (d).

Figure S6. Three-electrode electrochemical performance of GaN-2.5h. CV profiles of the electrode at scan rates ranging from 10 mV s⁻¹ to 100 mV s⁻¹ (a); from 200 mV s⁻¹ to 2,000 mV s⁻¹ (b) and from 5,000 mV s⁻¹ to 50,000 mV s⁻¹ (c); corresponding GCD curves, operated with current densities ranging from 0.5 mA cm⁻² to 10 mA cm⁻² (d).

Figure S7. Three-electrode electrochemical performance of GaN-3h. CV profiles of the electrode at scan rates ranging from 10 mV s⁻¹ to 100 mV s⁻¹ (a); from 200 mV s⁻¹ to 2,000 V s⁻¹ (b); from 5,000 mV s⁻¹ to 50,000 mV s⁻¹ (c); corresponding GCD curves, operated with current densities ranging from 0.1 mA cm⁻² to 0.8 mA cm⁻² (d) and from 1 mA cm⁻² to 10 mA cm⁻² (e).

Figure S8. Three-electrode electrochemical performance of GaN-2.5h with high mass loading. CV profiles of the electrode at scan rates ranging from 10 mV s⁻¹ to 100 mV s⁻¹ (a); from 200 mV s⁻¹ to 2,000 mV s⁻¹ (b) and from 5,000 mV s⁻¹ to 50,000 mV s⁻¹ (c); corresponding GCD curves, operated with current densities ranging from 1 mA cm⁻² to 8 mA cm⁻² (d) and from 10 mA cm⁻² to 100 mA cm⁻²; areal capacitance as a function of current density (e).

To further meet the requirement of the industrial application, the electrochemical behaviors of the few-layered GaN-2.5h electrode with high mass loading are studied (Figure S8, Supporting Information). The initial shape of CV curves is preserved as the scan rate expanded to 50 V s⁻¹, which signifying prominent reversibility and rapid reaction kinetics. Similarly, the GCD measurements have also verified this result. It is observed that the areal capacitance retains 50% (from 179.5 mF cm⁻² at 1 mA cm⁻² to 90 mF cm⁻² at 100 mA cm⁻²) even the current density is increased by a factor of 100.

Figure S9. The cross-section SEM image of GaN-2.5h electrode film with the mass loading is approximately 6 mg cm⁻² (a) and 1 mg cm⁻² (b), respectively.

The cross-section SEM of the electrode film suggestion that the electrode material is uniformly coated on the stainless steel mesh. It can be seen that with the increase of the mass loading, the thickness of the electrode becomes thicker.

Figure S10. IL-based SC device electrochemical performance of GaN at 25 °C. CV profiles of the device at scan rates ranging from 10 mV s⁻¹ to 80 mV s⁻¹ (a); from 100 mV s⁻¹ to 800 mV s⁻¹ (b); from 1 V s⁻¹ to 8 V s⁻¹ (c) and from 10 V s⁻¹ to 50 V s⁻¹ (d); corresponding GCD curves, operated with current densities ranging from 0.1 mA cm⁻² to 1 mA cm⁻² (e) and from 2 mA cm⁻² to 20 mA cm⁻² (f).

Figure S11. IL-based SC device electrochemical performance of GaN at 60 °C. CV profiles of the device at scan rates ranging from 10 mV s⁻¹ to 80 mV s⁻¹ (a); from 100 mV s⁻¹ to 800 mV s⁻¹ (b); from 1 V s⁻¹ to 8 V s⁻¹ (c) and from 10 V s⁻¹ to 50 V s⁻¹ (d); corresponding GCD curves, operated with current densities ranging from 0.1 mA cm⁻² to 1 mA cm⁻² (e) and from 2 mA cm⁻² to 20 mA cm⁻² (f).

Figure S12. IL-based SC device electrochemical performance of GaN at 80 °C. CV profiles of the device at scan rates ranging from 10 mV s⁻¹ to 80 mV s⁻¹ (a); from 100 mV s⁻¹ to 800 mV s⁻¹ (b); from 1 V s⁻¹ to 8 V s⁻¹ (c) and from 10 V s⁻¹ to 50 V s⁻¹ (d); corresponding GCD curves, operated with current densities ranging from 0.1 mA cm⁻² to 1 mA cm⁻² (e) and from 2 mA cm⁻² to 20 mA cm⁻² (f).

Figure S13. IL-based SC device electrochemical performance of GaN at 100 °C. CV profiles of the device at scan rates ranging from 10 mV s⁻¹ to 80 mV s⁻¹ (a); from 100 mV s⁻¹ to 800 mV s⁻¹ (b); from 1 V s⁻¹ to 8 V s⁻¹ (c) and from 10 V s⁻¹ to 50 V s⁻¹ (d); corresponding GCD curves, operated with current densities ranging from 0.5 mA cm⁻² to 2 mA cm⁻² (e) and from 5 mA cm⁻² to 20 mA cm⁻² (f).

Figure S14. IL-based SC device electrochemical performance of GaN at 130 °C. CV profiles of the device at scan rates ranging from 10 mV s⁻¹ to 80 mV s⁻¹ (a); from 100 mV s⁻¹ to 800 mV s⁻¹ (b); from 1 V s⁻¹ to 8 V s⁻¹ (c) and from 10 V s⁻¹ to 50 V s⁻¹ (d); corresponding GCD curves, operated with current densities ranging from 0.8 mA cm⁻² to 5 mA cm⁻² (e) and from 8 mA cm⁻² to 20 mA cm⁻² (f).

Figure S15. IL-based SC device electrochemical performance of GaN at 150 °C. CV profiles of the device at scan rates ranging from 10 mV s⁻¹ to 80 mV s⁻¹ (a); from 100 mV s⁻¹ to 800 mV s⁻¹ (b); from 1 V s⁻¹ to 8 V s⁻¹ (c) and from 10 V s⁻¹ to 50 V s⁻¹ (d); corresponding GCD curves, operated with current densities ranging from 0.8 mA cm⁻² to 8 mA cm⁻² (e) and from 10 mA cm⁻² to 100 mA cm⁻² (f).

Figure S16. Few-layered GaN IL-based SC devices Nyquist plots at 25 °C, 60 °C, 80 °C, 100 °C, 130 °C, 150 °C.

Figure S17. SEM images of the IL-based SC devices GaN electrode of 150 °C before (a,b) and after (c,d) 10,000 cycles at 8 mA cm⁻²

Figure S18. The optimized structures of GaN bulk (a) and the V_N @GaN bulk (b).

Figure S19. (a) Perfect GaN (100) surface side view (left) and top view (right); (b) the optimized structures of the V_N defects in different environments on the GaN-100 surface; (c) perfect GaN (001) surface side view (left) and top view (right).

To determine the optimal adsorption surface for $C_6H_{11}N_2 \cdot C_2F_6NO_4S_2$ (EMImNFT₂) on GaN, we first built the GaN-100 and GaN-001 surfaces in Figure **S19a and S19c**. The thickness of vacuum spacing was ~15Å in the *z*-direction to prevent spurious interactions. Compared with GaN-001 surface (-11.75 eV), GaN-100 surface has lower energy of -11.79 eV, so we constructed a series of EMImNFT₂ adsorption models based on the stable GaN-100 surface. For the V_N defects on the GaN-100 surface (V_N@GaN-100 surface), the energies of V_N in different environments were -11.32 eV and -11.36 eV, respectively, as shown in **Figure S19b** left and right. Thus, a series of models for EMImNFT₂ adsorption, were constructed on the stable V_N@GaN-100 surface (**Figure S19b**).

Figure S20. Calculated adsorption energies for electrolyte cation (EMIm⁺).

 Table S1. Comparison of electrochemical performance of GaN with wide-bandgap

 semiconductor based electrode reported in the literatures of aqueous electrolytes at 25

Material	Specific capacitance	Stability	Ref.		
GaN nanocrystalline	34.43 mF cm ⁻² at 0.5 mA cm ⁻²	97.8%-10,000	This work		
GaN MM	23.67 mF cm ⁻² at 10 mV s ⁻¹	98% - 30,000	Adv. Mater. 2016, 28, 3768		
GaN PM	21.22 mF cm ⁻² at 0.1 mA cm ⁻²	99% -10,000	Sci. Rep. 2017, 7, 40063		
SiC NWs arrays	23.6 mF cm ⁻² at 0.2 mA cm ⁻²	/	Adv. Funct. Mater. 2021, 31, 2008901		
SiC NWs	9.56 mF cm ⁻² at 0.2 mA cm ⁻¹	/	Energy Stor. Mater. 2020 , 27, 261		
SiC NWs	23.6 mF cm ⁻² at 10 mV s ⁻¹	94.8%- 10,000	Adv. Energy Mater. 2019, 9, 1900073		
SiC/G-HNF	0.41 mF cm ⁻² at 5 μ A cm ⁻²	86% - 5,000	Small 2018, 14, 1801857		
SiC nanochannels	14.8 mF cm ⁻² at 10 mV s ⁻¹	96% -10,000	Mater. Horiz. 2018, 5, 883		
N doped SiC NWs	4.8 mF cm ⁻² at 10 mV s ⁻¹	98% -10,000	ACS. Nano. 2015, 9, 8054		
SiC NWs	$\begin{array}{c} 2.33 \ \mu F \ cm^{-2} \ at \\ 100 \ mV \ s^{-1} \end{array}$	/	ACS Appl. Mater. Interfaces 2015, 7, 26658		
SiC NWs	$240 \ \mu F \ cm^{-2} \ at \\ 100 \ mV \ s^{-1}$	95% - 200,000	J. Power Sources 2013 , 230, 298		
SiC NWs array	$\begin{array}{c} 350 \ \mu F \ cm^{-2} \ at \\ 0.5 \ V \ s^{-1} \end{array}$	~100%-10,000	Nanoscale, 2013, <i>5</i> , 4114		
SiC NWs	23 mF cm ⁻² at 50 mV s ⁻¹	90% -10,000	J. Power Sources, 2013 , 243, 648		
SiC/C	734 μF cm ⁻² at 10 mV s ⁻¹	91.2% -20,000	J. Mater. Sci. Technol. 2022, 110, 178		
SiC NWs	$\begin{array}{c} 46.7 \ mF \ cm^{-2} \ at \\ 0.1 \ V \ s^{-1} \end{array}$	~100%-10,000	J. Alloys Compd. 2020, 827, 154168		
C/PSiC	325 mF cm ⁻² at 1mA cm ⁻²	83% - 5,000	Nano Lett. 2014, 14, 1843		

°C.

index	fixed	parameter	parameter start		rel. Std. error (%)	
1	0	Rs	0.8562	0.8562	1.384	
2	0	С	0.007263	0.007081	1.600	
3	0	Rct	0.495	0.495	1.197	
4	0	W	0.1649	0.1649	6.337	

Table S2. Fitting report of Figure 3f insert based on a R(CR)W equivalent circuit.

 Table S3. Comparison of electrochemical performance of high mass loading
 electrode reported in the literatures.

Material	Mass loading	Max Scan rate	Capacitance retention	Ref.
GaN crystal	~6 mg cm ⁻²	50 V s ⁻¹	50% (from 1 mA cm ⁻² to 100 mA cm ⁻²)	This work
CNT@MnO2	6.6 mg cm ⁻²	$150 {\rm ~mV~s^{-1}}$	~46% (from 1 mA cm ⁻² to 15 mA cm ⁻²)	Chem. Eng. J., 2019, 368, 525.
ZnNiCo LDH	7 mg cm ⁻²	60 mV s ⁻¹	52.3% (from 3 mA cm ⁻² to 30 mA cm ⁻²)	J. Mater. Chem. A, 2019, 7, 11826
NiCo LDH	5.11 mg cm ⁻²	100 mV s ⁻¹	~22% (from 5 mA cm ⁻² to 30 mA cm ⁻²)	<i>Electrochim. Acta,</i> 2020 , <i>362</i> , 137081
MnO ₂ /C	25 mg cm ⁻²	1 V s ⁻¹	11% (from 0.5 mA cm ⁻² to 40 mA cm ⁻²)	Adv. Funct. Mater., 2021 , 31, 2009632
WC@MnO2	12.8 mg cm ⁻²	$50 \text{ mV} \text{ s}^{-1}$	~37.5% (from 1 mA cm ⁻² to 15 mA cm ⁻²)	Small 2022 , 18, 2201307
NiO/NF	17.4 mg cm ⁻²	100 mV s ⁻¹	35.9% (from 2 mA cm ⁻² to 100 mA cm ⁻²)	<i>Electrochim. Acta,</i> 2021 , <i>390</i> , 138772

Table S4. Comparison of electrochemical performance of GaN IL-based SC devices

Material	Temperature (°C)	Voltage window	Max Scan rate	Specific capacitance	Energy density	Power density	Capacitar retain-cy	nce Ref.
GaN nanocrystalline	150	0 -2.7 V	50 V s ⁻¹	52.58 mF cm ⁻² at 0.8 mA cm ⁻²	13.3 μWh cm ⁻²	67.5 mW cm ⁻²	86.2% -10,000	This work
SiC NWs arrays	150	0-2.5 V	$200 \text{ mV} \\ \text{s}^{-1}$	18.5 mF cm^{-2} at 2 mA cm ⁻²	/	/	80% - 10,000	Adv. Funct. Mater. 2021, 31, 2008901
Carbon cloth	120	0-1.8 V	5 mV s^{-1}	531.5 mF cm ⁻² at 4 mA cm ⁻²	283.9 μWh cm ⁻² (25 °C)	0.9 mW cm ⁻² (25 °C)	79.3% - 75	J. Mater. Chem. A, 2019, 7, 20398
SiC NWs	60	0-0.6 V	$2 \ V \ s^{-1}$	19.3 mF cm ⁻² at 5 mA cm ⁻²	0.64 μWh cm ⁻² (20 °C)	1.1 mW cm ⁻² (20 °C)	90% - 10,000	J. Power Sources, 2013, 243, 648
TiC fibre	65	0-1.6 V	1V s ⁻¹	192 F g^{-1} at 5 A g^{-1}	15.6 Wh kg ⁻¹ (25 °C)	$760~{ m W}$ kg ⁻¹	85% - 50,000	Energy Environ. Sci., 2015, 8, 1559
TiC	65	0-3 V	$1 \mathrm{~V~s^{-1}}$	2.94 F cm ⁻³ at 57.6 mA cm ⁻²	3 mWh cm ⁻³	2.9 mW cm ⁻³	98% - 75,000	J. Mater. Chem. A, 2016, 4, 18717
TiC NWs	60	0-3 V	400 V s ⁻¹ (25 °C)	$185 \text{ F g}^{-1} \text{ at } 2$ A g $^{-1}$	18.2 kWh kg ⁻¹	1.6 kW kg ⁻¹	96.8% - 50,000	Small 2017, 13, 1602742
Carbon	100	0-2.5 V	50 mV s- 1	150 mF cm^{-2} at 200 mV s ⁻¹	/	/	92% - 25,000	Energy Stor. Mater. 2019, 21, 439
laser-induced graphene	100	0-2.5 V	10 mV s ⁻	3.7 mF cm^{-2} at 10µA cm ⁻²	4.5 μWh cm ⁻²	90.5 μW cm ⁻²	75% - 3,200	Electrochim. Acta 2020, 357, 136838
FeOOH/CC	200	0-2.5 V	100 mV s ⁻¹	115 mF cm^{-2} at 3 mA cm ⁻²	1.44 mWh cm ⁻³	49 mW cm ⁻³	70% - 5,000	J. Mater. Chem. A 2016, 4, 8316
GO	100	0-0.8 V	50 mV s ⁻	96.2 mF cm ⁻² at 0.223 mA cm ⁻²	8.55 μWh cm ⁻²	0.0853 mW cm ⁻²	75.3% - 3,000	Nano Energy 2019, 64 103938
Ni foam	80	0-3.5 V	$20 \mathrm{~V~s^{-1}}$	$\begin{array}{c} 365 \ \mu F \ cm^{-2} \\ at \ 1 \ V \ s^{-1} \end{array}$	0.05 μWh cm ⁻² (25 °C)	0.5 mW cm ⁻² (25 °C)	93.5% - 3,000 (25 °C)	Electrochim. Acta 2018, 267, 15

with others high temperature SC electrodes reported in the literatures.

MnO ₂ //Graphene	80	0-1.4 V	$\frac{100 \text{ mV}}{\text{s}^{-1}}$	132 mF cm ⁻² at 2 mA cm ⁻¹	50 μWh cm ⁻² (25 °C)	6.4 mW cm ⁻² (25 °C)	93% - 5,000 (25 °C)	Nano Energy 2017, 3 8, 127
PEDOTS- RuO ₂ @PEDOTS	75	0-1.5 V	50 mV s- 1	$202.5 \text{ mF} \\ \text{cm}^{-2} \text{ at } 50 \\ \text{mV s}^{-1}$	22.9 μWh cm ⁻²	/	74.3% - 2,000	Nano Energy 2018, 50, 106
commercial AC	150	0-1.5 V	$\frac{100 \text{ mV}}{\text{s}^{-1}}$	120 F g ⁻¹ at 30 mA cm ⁻²	34.8 Wh kg ⁻¹	8.2 kW kg ⁻¹	83% - 1,000	<i>Chem. Comm,</i> 2019, <i>55,</i> 15081
rGO	120	-0.5- 0.5V	100 mV s ⁻¹	$18.6 \ mF \ cm^{-2} \\ at \ 50 \ mV \ s^{-1}$	0.06 mWh cm ⁻³	0.9 W cm ⁻³	93% - 100,000	ACS. Nano. 2015, 9, 8069
Bio-AC	115	0-1.3 V	$\frac{100 \text{ mV}}{\text{s}^{-1}}$	172 F g ⁻¹	7.2 Wh kg ⁻¹	137.5 W kg ⁻¹	63% - 100,000	Electrochim. Acta 2018, 286, 148
BCN nanotube	100	0-3 V	$\frac{100 \text{ mV}}{\text{s}^{-1}}$	37.6 mF cm ⁻² at 10 mA cm ⁻ 2	1.3 mWh cm ⁻³	24.9 mW cm ⁻³	86.1% - 200	Small, 2021, 17, 2102899
rGO	100	0-1 V	$1 \mathrm{~V~s^{-1}}$	6.8 F cm ⁻³ at 50 mV s ⁻¹	0.837 mWh cm ⁻³	400 mW cm ⁻³	/	ACS Appl. Energy Mater. 2020, 3, 5693
CNT/PANI	100	0-1 V	$\frac{100 \text{ mV}}{\text{s}^{-1}}$	221 mF cm ⁻² at 3.33 mA cm ⁻²	/	/	93% - 5,000 (25 °C)	J. Mater. Chem. A, 2021, 9, 12051
AC	90	0-1 V	10 mV s ⁻	272 F g ⁻¹ at 1 A g ⁻¹	37.7 Wh kg ⁻¹	678.6 W kg ⁻¹	~100% -1,000	J. Power Sources 2018, 379, 60
AC	90	0-2.4 V	200 mV s ⁻¹	21.93 F g^{-1} at 1 A g^{-1}	21.63 Wh kg ⁻¹	1.13 kW kg ⁻¹	~100% -18,000	J. Colloid Interface Sci. 2022, 608, 1162
AC	85	0-2.7 V	80 mV s ⁻	79.1 F g ⁻¹ at 10 mV s ⁻¹	0.03 mWh cm ⁻³	3.08 mW cm ⁻³	73% - 5,000	J. Power Sources 2020, 447, 227390
Activated Graphene	80	0-3 V	10 mV s ⁻	28.4 mF cm ⁻² at 0.05 mA cm ⁻²	54.6 mWh cm ⁻³	4.6 W cm ⁻³	88% - 2,000	Energy Environ. Sci., 2018, 11, 2001
La ₂ O ₃ Nanosheet	70	0-1 V	30 mV s- 1	100 F g^{-1} at 30 mV s^{-1}	/	/	67% - 2,000	Electrochim. Acta 2018, 260, 449

TiC@crystalline PPy	60	-1-0.6 V	$\begin{array}{c} 400 \text{ mV} \\ \text{s}^{-1} \end{array}$	$326 \text{ F g}^{-1} \text{ at}$ 400 mV s^{-1}	/	/	40% - 5,000	J. Power Sources 2015, 274, 1118
AC	60	0-1.8 V	50 mV s ⁻	262 F g ⁻¹	138.6 Wh kg ⁻¹	18 kW kg ⁻¹	80% - 5,500	Nano Energy 2021, 90, 106500
Carbon	60	0-2.5 V	$\frac{100 \text{ mV}}{\text{s}^{-1}}$	182 F g ⁻¹ at 5 mV s ⁻¹	/	/	84.9%- 10,000	Energy Stor. Mater. 2019, 22, 323
SiC nanochannel	60	-0.1- 0.7 V	$\frac{200 \text{ mV}}{\text{s}^{-1}}$	14.8 mF cm ⁻² at 10 mV s ⁻¹	/	/	96.8% - 10,000	<i>Mater</i> . <i>Horiz.,</i> 2018, <i>5</i> , 883
TiC	60	0-3 V	$400~V~s^{-1}$	81.3 F cm ⁻³ at 30 A g ⁻¹	13.1 Wh kg ⁻¹	20.2 kW kg ⁻¹	96.8% - 50,000	Small 2017, 13, 1602742
MoS ₂ @TiO ₂	60	-0.5- 0.5 V	50 mV s ⁻	60 F g ⁻¹ at 0.5 A g ⁻¹	21 Wh kg ⁻	1.35 kW kg ⁻¹	98% - 2,000 (25 °C)	J. Alloys Compd 2021, 883, 160705
Graphene	60	0-1.5 V	$\frac{500 \text{ mV}}{\text{s}^{-1}}$	274 F g^{-1} at 2.4 A g^{-1}	11.5 Wh kg ⁻¹ (25 °C)	48.2 W kg ⁻¹ (25 °C)	69% - 5,000	J. Power Sources 2021, 488, 229461
AC	50	0-3V	20 mV s ⁻	111 F g ⁻¹ at 0.1 A g ⁻¹	9.0 Wh kg ⁻¹	15.3 kW kg ⁻¹	<97% - 1,000	J. Mater. Chem. A, 2015, 3, 18860
NiCo-MOF	50	0-1.8 V	100 mV s ⁻¹	147.8 F g^{-1} at 1 A g^{-1}	77.7 Wh kg ⁻¹ (25 °C)	450 W kg ⁻¹ (25 °C)	92.6% - 4,000 (25 °C)	J. Mater. Chem. A, 2019, 7, 4998
Graphene Thin sheet	45	0-1 V	$200 \ \mathrm{mV} \\ \mathrm{s}^{-1}$	99 F g ⁻¹ at 1 mA cm ⁻²	3.44 Wh kg ⁻¹	99.2 kW kg ⁻¹	92% - 5,000	<i>Nano energy</i> 2014, <i>8,</i> 231

Remarks:

NWs: nanowires

AC: Activated carbon

rGO: Reduced graphene oxide

GO: Graphene oxide

Table S5. Comparison of the N atoms and Ga atoms band charge around the V_N active site of the perfect GaN surface and $V_N@GaN$.

Band Charge	N ₄	N_3	Ga4	Ga ₃	N_2	N_1	Ga ₂	Ga ₁	N_6	N_5
GaN surface	-1.46	-1.47	+1.43	+1.42	-1.46	-1.48	+1.51	+1.50	-1.46	-1.47
V _N @GaN surface	-1.46	-1.47	+1.44	+0.76	-1.15		+0.93	+0.78	-1.45	-1.44

References

- [1] G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- [2] G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758.
- [3] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [4] J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys., 2003,118, 8207.
- [5] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys., 2006, 125, 224106.
- [6] H. J. Monkhorst, J. D. Pack, Phys Rev B, 1976, 13, 5188.