Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Azide molecule mediated electrolyte engineering for selective photoelectrochemical azo coupling and efficient and stable water splitting

Shutao Li^a, Min Li^b, Fang Chen^a, Hongwei Huang^a*

^a Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, P. R. China

^b Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China

*Corresponding author. *E-mail address:* hhw@cugb.edu.cn

Figure S1. XRD pattern of BVO and BVO-PANI.

Figure S2. HRTEM image of BVO-PANI

Figure S3. (a) Survey XPS spectra of BVO-PANI photoanode and high-resolution XPS spectra of (b) Bi 4f, (c) V2p, (d) C1s and (e) N 1s.

Figure S4. UV-vis DRS spectra of BVO and BVO-PANI photoanodes.

Figure S5. The UV-Vis absorption spectra of 5AT/Na₂SO₄ at (c) pH=2, (b) pH=4 and (c) pH=5 before and after PEC reaction.

Figure S6. The HPLC spectra of $5AT/Na_2SO_4$ at pH=3.2 and pH=6 before and after PEC reaction.

Figure S7. J-V plots of BVO and BVO-PANI photoanodes in Na_2SO_4 and $5AT/Na_2SO_4$ electrolyte solution with 0.1 M Na_2SO_3 .

Figure S8. J-V and J-t curves of BVO photoanode in $0.1M \text{ Na}_2\text{SO}_4$ acidified with 0.1 M dilute H₂SO₄ (PH=3.2).

Figure S9. The actual amount of H_2 and O_2 produced by BVO in 5AT solution under AM1.5G illumination at $1.23V_{RHE}$.

Figure S10. XRD images of (a) TiO_2 and (b) α -Fe₂O₃ photoanodes. J-V plots of (c) TiO_2 and (d) α -Fe₂O₃ photoanodes in Na₂SO₄ and 5AT/Na₂SO₄ electrolyte solution.

Figure S11. ABPE of BVO and BVO-PANI in 5AT/NaVO₃/Na₂SO₄.

Figure S12. J-V plots of BVO and BVO-PANI photoanodes in 5AT/NaVO₃/Na₂SO₄ electrolyte solution with 0.1 M Na₂SO₃.

Figure S13. J-V curve of BVO in NaVO₃/Na₂SO₄ electrolyte solution.

Electrolyte	Onset potential	J (mA cm ⁻²) at $1.23V_{RHE}$
Na ₂ SO ₄ +5AT (pH=2)	$0.4 V_{RHE}$	3.71
Na ₂ SO ₄ +5AT (pH=3.2)	$0.36 \ V_{RHE}$	3.60
Na ₂ SO ₄ +5AT (pH=4)	$0.32 \ V_{RHE}$	3.45
Na ₂ SO ₄ +5AT (pH=5)	$0.32 \ V_{RHE}$	3.64
Na ₂ SO ₄ +5AT (pH=6)	$0.32 \ V_{RHE}$	3.93

Table S1. Onset potentials and photocurrent densities at $1.23V_{RHE}$ of BVO photoanode in Na₂SO₄+5AT electrolyte solutions with different pH.

Table S2. Fitting results of Electrochemical Impedance Spectra (at $1.23V_{RHE}$, AM 1.5G irradiation).

Photoanode	Electrolyte	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
BVO	Na ₂ SO ₄ (pH=6.8)	34.51	178.7
BVO-PANI	Na ₂ SO ₄ (pH=6.8)	34.29	169.1
BVO	Na ₂ SO ₄ +5AT (pH=3.2)	38.0	116.8
BVO-PANI	Na ₂ SO ₄ +5AT (pH=3.2)	35.44	101.5

Photoanode	Electrolyte	Onset	J (mA cm ⁻	Stability	Referen
	-	potential	²) at 1.23	·	ce
			V _{RHE}		
			1012		
NiFe	1 M KBi+Fe ²⁺	$0.17 V_{RHE}$	2.6	1100 h	[1]
OER/Mo:BVO/Ni/Sn			(0.6 V _{RHE})	(0.6	
				V_{RHE})	
Etched-NiOOH/BVO	1 M KBi+Fe ²⁺	0.3 V _{RHE}	5.43	200 h	[2]
				(0.8	
				V _{RHE})	
BVO/FeOOH/NiOO H	1 M KBi+0.1 M V ₂ O ₅ (pH=9.3)	$0.24 V_{RHE}$	4.8	500 h	[3]
				(0.6	
				V _{RHE})	
β-FeOOH-B-BVO	0.5 M KBi+0.1M NaVO ₃ (pH=9. 3)	$0.28 \ V_{RHE}$	4.96	20 h	[4]
				(1.23	
				V _{RHE})	
BVO/Co-Sil	0.5 M KBi+0.1M NaVO ₃ (pH=9.5)	0.22 V _{RHE}	5.0	20 h	[5]
				(1.23	
				(1.23 V	
				V RHE)	
Ov-BVO@NiFe-	0.5 M KBi+0.05 V ₂ O ₅ (pH=9)		5.3±0.15	10 h	[6]
MOFs				(0.7	
				V _{RHE})	

Table S3 Recent reports on electrolyte composition regulation to promote PEC watersplitting of $BiVO_4$ (BVO) photoanode.

Reference

- Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada, A. Kudo, K. Domen, *Nature Energy* 2016, *2*, 16191.
- [2] R.-T. Gao, D. He, L. Wu, K. Hu, X. Liu, Y. Su, L. Wang, Angewandte Chemie International Edition 2020, 59, 6213.
- [3] D. K. Lee, K.-S. Choi, *Nature Energy* **2018**, *3*, 53.
- [4] Z. Kang, X. Lv, Z. Sun, S. Wang, Y.-Z. Zheng, X. Tao, Chemical Engineering Journal 2021, 421, 129819.
- [5] Q. Sun, T. Cheng, Z. Liu, L. Qi, *Applied Catalysis B: Environmental* **2020**, 277, 119189.
- [6] J.-B. Pan, B.-H. Wang, J.-B. Wang, H.-Z. Ding, W. Zhou, X. Liu, J.-R. Zhang, S. Shen, J.-K. Guo, L. Chen, C.-T. Au, L.-L. Jiang, S.-F. Yin, *Angewandte Chemie International Edition* 2021, 60, 1433.