Supporting Information

High-Performance Pseudo-bilayer Ternary Organic Solar Cells with

PC₇₁BM as the Third Component

Yujiao Yan, ^a Xuejiao Zhou, ^a Fenghua Zhang, ^a Jun Zhou, ^a Tao lin, ^a Yaohui Zhu, ^a Denghui Xu, ^a Xiaoling Ma, ^{*b} Ye Zou, ^{*c} Xiong Li, ^{*a}

^aDepartment of Physics, Beijing Technology and Business University, Beijing 100048, China.

*Corresponding Author: E-mail address: lixiong@btbu.edu.cn (Xiong Li)

^bKey Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100091, China.

*Corresponding Author: E-mail address: maxl@bjtu.edu.cn (Xiaoling Ma) ^cBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China *Corresponding Author: E-mail address: zouye@iccas.ac.cn (Ye Zou)

contents

1.Materials	3
2. Solution Preparation	3
3.Device Fabrication	3
4. Instruments and characterization	4
5.Additional experimental results	5

1.Materials

Polymer donor PM6, the host acceptor Y6 and cathode buffer layer PDIN were purchased from Solarmer Material Inc. The guest acceptor PC₇₁BM were purchased from 1-Material Inc. Anode buffer layer PEDOT: PSS was obtained from Heraeus (Clevios P Al4083) and the pre-patterned indium tin oxide (ITO) coated glass substrates were obtained from Huananxiangcheng Technology Co. Solvent chloroform (CF) and additive 2-Chloronaphthalene (CN) were obtained from J&K Scientific Ltd. High-purity argentum (purity>99.99%) was used for the evaporation of electrode. All the materials were used as received without any further treatment.

2. Solution Preparation

PM6 was dissolved in CF at a concentration of 8 mg/ml, and the solution was stirred at 40 °C for 2 h. Small molecule Y6 and PC₇₁BM were dissolved in chloroform (CF) to prepare 8 mg/ml mixed solution, and the weight ratio was kept constant at 0.90:0.10. The cathode buffer layer solvent was prepared by dissolving PDIN in methanol (2 mg/ml) and 0.3 vol% acetic acid was used as auxiliary.

3.Device Fabrication

Patterned ITO electrode was cleaned by sequential sonication in deionized water, acetone, ethyl alcohol each for 20 min, then dried by high-purity nitrogen gas. After 8 min ultraviolet-ozone treatment for the ITO substrate, anode buffer layer was prepared by spin-coating PEDOT:PSS aqueous solution with speed of 3500 rpm and then thermal-annealed at 150 $^{\circ}$ C for 30 min, then the PEDOT: PSS anode buffer layer was obtained with the thickness of about 30 nm. After that, the treated

ITO/PEDOT:PSS films were transferred into a high-purity nitrogen-filled glove box (<0.01 ppm O₂ and H₂O) to fabricate active layers and cathode interlayers. PM6 was spin-coated on top of PEDOT:PSS at speed of 3000 rpm, after the PM6 film drying in Petri dish for 2 hours, the PM6 film with a thickness of about 53 nm was obtained. Then the Y6 and PC₇₁BM blend was spin-coated onto the PM6 layer with a thickness of about 51 nm, and the prepared films were annealed at 85 °C for 5 min. Subsequently, PDIN interlayer was obtained by spin-casting on top of active layers with the thickness of about 10 nm. Finally, Ag of about 100 nm was thermally deposited on the PDIN layer under the vacuum of 2×10^{-4} Pa, and the deposition rate and thickness of Ag was in situ recorded with a quartz crystal oscillator monitor. The effective area of organic solar cells is 0.045 cm², which is defined by the overlap of ITO anode and Ag cathode.

4. Instruments and characterization

The UV-vis absorption spectra were conducted with ultraviolet–visible spectrophotometer (Hatachi-U3900H). Current density-voltage (*J-V*) curves for all devices were measured using a Keithley 2400 Source Meter under 100 mW/cm² illumination with AM 1.5 solar simulator (San-Ei Electric). AM 1.5 G solar simulator was calibrated by standard silicon solar cells (purchased from Enlitech). The external quantum efficiency (EQE) was conducted with a solar cell QE/IPCE measurement system (Zolix solar cell scan100). Transient photovoltage (TPV), transient photocurrent (TPC) and photo-induced charge extraction linear increasing voltage (Photo-CELIV) were conducted with a Bruker-Fast scan ultrafast DI AFM with soft tapping mode. The contact angle images were obtained using a surface contact angle tester (Zhongchen, JC2000D1, China). The optimized thickness of the active layer is

~100 nm, which was measured by Bruker Stylus Profile (Dektak XT, Bruker Corporation).

5.Additional experimental results

Active layer	V _{oc} (V)	J _{SC} (mA/cm ²)	FF(%)	PCE(%)	Ref.
PM6:Y6:MF1	0.853	25.68	78.61	17:22	1
PM6:Y6:BR1	0.859	26.49	75.7	17:23	2
PM6:Y6:TPD-3F	0.88	25.6	73.4	17.0	3
PM6:Y6:DRTB-T-C4	0.85	24.79	81.3	17.13	4
PM6:Y6:C8-DTC	0.873	26.50	75.61	17.52	5
PM6:Y6:TiC12	0.853	26.80	75.4	17.25	6
PM6:Y6:S3	0.86	25.86	79.17	17.53	7
PM6:Y6:ITCPTC	0.861	25.674	78.8	17.42	8
PM6:Y6:ITIC-M	0.859	26.35	80.10	18.13	9
PM6:N3:PC ₇₁ BM	0.84	26.76	0.78	17.6	10
PM6:Y6:PC ₇₁ BM	0.858	25.2	76	16.4	11
PM6:PM7:Y6:PC ₇₁ BM	0.859	26.55	79.23	18.07	12
PM6:Y6:TF1	0.870	25.63	74.79	16.67	13
PIVI6/Y6:1F1 PM6:Y6:BTP-S2	0.870	25.89	5.08 75.8	15.91	
PM6/Y6:BTP-S2	0.883	26.45	76.29	17.81	14
PM6:BTP-eC9:BPR-SCI	0.856	27.13	77.6	18.02	15
PM6:BTBr-2F:Y6	0.859	27.30	74.11	17.38	16
PM6:BTTzR:Y6	0.87	26.2	77.7	17.7	17
D18-Cl:G19:Y6	0.871	27.36	77.72	18.53	18
PTQ10:m-BTP- PhC6:PC ₇₁ BM	0.869	26.99	80.6	18.89	19
PM6:BO-4Cl:Y6-10	0.855	27.46	79	18.52	20
PM6:BTP-eC9:L8-BO-F	0.853	27.35	80.0	18.66	21

Table S1. Recent progress of high performance ternary BHJ OSCs and PPHJ OSCs.

PBQx-TF:eC9-2CI:F- BTA3	0.879	26.7	80.9	19.0	22	
PTO3/PBDB-TF:BTP- ec9/NDI-i8	0.866	26.6	80.3	18.50	23	
PM6/BO-4Cl	0.846	26.81	75.40	17.11	21	
PM6/BO-4Cl:BTP-S2	0.861	27.14	_ 78.04 _	_18.16	24 	
PM6/Y6	0.82	26.3	76.3	16.5	25	
PM6/N3:MF1	0.85	25.61	76.95	16.75	26	
D18/ BTIC-BO-4Cl	0.86	26.32	77.66	17.6	27	
PNTB6-CI/ N3	0.857	26.58	77.3	17.59	28	
D18/N3	0.845	24.95	77.46	17.05	29	
PNTB6-CI/ BTP-4F-12	0.874	26.89	75.79	17.81	30	
D18-CI/N3(DIB)	0.860	27.18	78.8	18.42	31	
D18/BS3TSe-4F:Y6-O	0.845	29.41	76.56	19.03	32	
D18/L8-BO	0.918	26.86	77.25	19.05	33	
PM6:Y6:PC ₇₁ BM	0.854	26.79	74.68	17.09		
PM6/Y6:PC ₇₁ BM	0.855	26.82	77.73	17.82		

Fig. S1. Photographs of PM6, Y6, PC₇₁BM, PM6/Y6, PM6:Y6:PC₇₁BM and PM6/Y6:PC₇₁BM films.

Fig. S2. The PC₇₁BM fluorescence spectrum and Y6 absorption spectrum.

Fig. S3. The statistical data of film thickness of (a) PM6; (b) Y6, (c)Y6: PC₇₁BM, (d) PM6/Y6 and (e) PM6/Y6:PC₇₁BM film.

Fig. S4. *J-V* curves of the pseudo-bilayer PM6/Y6 OSCs with different donor layer and acceptor layer thickness.

Table S2. Photovoltaic parameters of the pseudo-bilayer PM6/Y6 OSCs with different donor layer and acceptor layer thickness.

Thickness (nm)	Voc ^a (V)	FFª (%)	Jsc ^a (mA/cm ²)	PCE (%)
56.0 / 52.5	0.831	73.48	24.52	14.95°(14.83±0.19) ^b
54.0 / 52.5	0.833	74.17	24.95	15.36°(15.12±0.17) ^b
53.0 / 52.5	0.835	73.57	26.76	16.44°(16.21±0.25) ^b
53.0 / 55.0	0.835	70.00	26.79	15.56ª(15.38±0.23) ^b
54.0 / 58.0	0.836	66.89	26.45	14.86ª(14.61±0.26) ^b
54.0 / 56.0	0.835	72.17	25.96	15.55°(15.36±0.21) ^b
54.0 / 54.0	0.834	74.31	24.98	15.41°(15.23±0.27) ^b

^a The maximum values of the devices. ^b The average and deviation values of the PCE obtained from 10 devices.

Fig. S5. *J-V* curves of the pseudo-bilayer PM6/Y6: $PC_{71}BM$ devices with different $PC_{71}BM$ contents.

Table S3. Photovoltaic parameters of the pseudo-bilayer PM6/Y6: $PC_{71}BM$ devices with different $PC_{71}BM$ contents.

Y6 : PC ₇₁ BM	Voc ^a (V)	FF ^a (%)	Jsc ^a (mA/cm ²)	PCE (%)
0:1	0.977	63.72	13.25	8.25 ^a (7.93±0.21) ^b
0.95 : 0.05	0.854	75.48	26.76	17.25 ^a (17.09±0.24) ^b
0.90 : 0.10	0.855	77.73	26.82	17.82 ^a (17.47±0.25) ^b
0.85 : 0.15	0.855	75.17	26.95	17.32°(17.13±0.22) ^b
1:0	0.835	73.57	26.76	16.44ª(16.21±0.23) ^b

^a The maximum value of the devices. ^b The average and deviation values of the PCE obtained from 10 devices.

Fig. S6. The illumination spectrum of the white LED.

Reference

- 1. Q. S. An, J. Wang, W. Gao, X. L. Ma, Z. H. Hu, J. H. Gao, C. Y. Xu, M. H. Hao, X. L. Zhang, C. L. Yang and F. J. Zhang, *Sci. Bull.*, 2020, **65**, 538-545.
- H. R. Feng, Y. J. Dai, L. H. Guo, D. Wang, H. Dong, Z. H. Liu, L. Zhang, Y. J. Zhu, C. Su, Y. S. Chen and W. W. Wu, *Nano Res.*, 2021, **15**, 3222-3229.
- B. H. Jiang, Y. P. Wang, C. Y. Liao, Y. M. Chang, Y. W. Su, R. J. Jeng and C. P. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 1076-1085.
- D. Q. Li, L. Zhu, X. J. Liu, W. Xiao, J. M. Yang, R. R. Ma, L. M. Ding, F. Liu, C. G. Duan, M. Fahlman and Q. Y. Bao, *Adv. Mater.*, 2020, **32**, 2002344-2002351.
- Q. Ma, Z. R. Jia, L. Meng, J. Y. Zhang, H. T. Zhang, W. C. Huang, J. Yuan, F. Gao, Y. Wan, Z. J. Zhang and Y. F. Li, *Nano Energy*, 2020, **78**, 105272-105280.
- W. Tang, W. H. Peng, M. B. Zhu, H. X. Jiang, W. C. Wang, H. Xia, R. Q. Yang, O. Inganäs, H. Tan, Q. Z. Bian, E. G. Wang and W. G. Zhu, *J. Mater. Chem. A*, 2021, *9*, 20493-20501.
- 7. Q. S. An, J. W. Wang, X. L. Ma, J. H. Gao, Z. H. Hu, B. Liu, H. L. Sun, X. G. Guo, X. L. Zhang and F. J. Zhang, *Energy Environ. Sci.*, 2020, **13**, 5039-5047.
- R. J. Ma, T. Liu, Z. H. Luo, K. Gao, K. Chen, G. Y. Zhang, W. Gao, Y. Q. Xiao, T.-K. Lau, Q. P. Fan, Y. Z. Chen, L. K. Ma, H. L. Sun, G. L. Cai, T. Yang, X. H. Lu, E. G. Wang, C. L. Yang, A. K. Y. Jen and H. Yan, *ACS Energy Lett.*, 2020, 5, 2711-2720.
- Y. H. Zeng, D. Q. Li, H. B. Wu, Z. Chen, S. F. Leng, T. Y. Hao, S. B. Xiong, Q. F. Xue, Z. F. Ma, H. M. Zhu and Q. Y. Bao, *Adv. Funct. Mater.*, 2021, **32**, 2110743-2110752.
- 10. Y. P. Qin, Y. Xu, Z. X. Peng, J. H. Hou and H. Ade, *Adv. Funct. Mater.*, 2020, **30**, 2005011.
- 11. S. He, Z. C. Shen, J. D. Yu, H. L. Guan, G. H. Lu, T. Xiao, S. T. Yang, Y. P. Zou and L. J. Bu, *Adv. Mater. Interfaces*, 2020, **7**, 2000577-2000587.
- F. Liu, L. Zhou, W. R. Liu, Z. C. Zhou, Q. H. Yue, W. Y. Zheng, R. Sun, W. Y. Liu, S. J. Xu, H. J. Fan, L. H. Feng, Y. P. Yi, W. K. Zhang and X. Z. Zhu, *Adv. Mater.*, 2021, **33**, 2100830-2100838.
- 13. X. F. Liao, Q. Xie, Y. X. Guo, Q. N. He, Z. Chen, N. Yu, P. P. Zhu, Y. J. Cui, Z. F. Ma, X. B. Xu, H. M. Zhu and Y. W. Chen, *Energy Environ. Sci.*, 2022, **15**, 384-394.
- 14. L. L. Zhan, S. X. Li, X. X. Xia, Y. K. Li, X. H. Lu, L. J. Zuo, M. M. Shi and H. Z. Chen, *Adv. Mater.*, 2021, **33**, 2007231-2007240.
- 15. X. J. Chen, D. Wang, Z. K. Wang, Y. H. Li, H. M. Zhu, X. H. Lu, W. Z. Chen, H. Y. Qiu and Q. Zhang, *Chem. Eng. J.*, 2021, **424**, 130397-130403.
- 16. L. Y. Xu, W. X. Tao, H. Liu, J. H. Ning, M. H. Huang, B. Zhao, X. H. Lu and S. T. Tan, *J. Mater. Chem. A*, 2021, **9**, 11734-11740.
- Q. Liu, Y. Wang, J. Fang, H. Q. Liu, L. Zhu, X. Guo, M. Y. Gao, Z. Tang, L. Ye, F. Liu, M. J. Zhang and Y. F. Li, *Nano Energy*, 2021, **85**, 105963-105972.
- 18. Z. Y. Chen, W. Song, K. B. Yu, J. F. Ge, J. S. Zhang, L. Xie, R. X. Peng and Z. Y. Ge, *Joule*, 2021, **5**, 2395-2407.
- 19. S. N. Bao, H. Yang, H. Y. Fan, J. Q. Zhang, Z. X. Wei, C. H. Cui and Y. F. Li, *Adv. Mater.*, 2021, **33**, 2105301-2105311.
- 20. D. Wang, G. Q. Zhou, Y. H. Li, K. R. Yan, L. L. Zhan, H. M. Zhu, X. H. Lu, H. Z. Chen and C. Z. Li, *Adv. Funct. Mater.*, 2021, **32**, 2107827-2107835.

- Y. H. Cai, Y. Li, R. Wang, H. B. Wu, Z. H. Chen, J. Zhang, Z. F. Ma, X. T. Hao, Y. Zhao, C. F. Zhang, F. Huang and Y. M. Sun, *Adv. Mater.*, 2021, **33**, 2101733-2210742.
- Y. Cui, Y. Xu, H. F. Yao, P. Q. Bi, L. Hong, J. Q. Zhang, Y. F. Zu, T. Zhang, J. Z. Qin, J. Z. Ren, Z. H. Chen, C. He, X. T. Hao, Z. X. Wei and J. H. Hou, *Adv. Mater.*, 2021, **33**, 2102420-2102428.
- 23. L. Hong, H. F. Yao, Y. Cui, P. Q. Bi, T. Zhang, Y. X. Cheng, Y. F. Zu, J. Z. Qin, R. N. Yu, Z. Y. Ge and J. H. Hou, *Adv. Mater.*, 2021, **33**, 2103091-2103099.
- 24.L. L. Zhan, S. X. Li, X. X. Xia, Y. K. Li, X. H. Lu, L. J. Zuo, M. M. Shi and H. Z. Chen, *Adv. Mater.*, 2021, **33**, 2007231-2007240.
- 25. Q. D. Li, L. M. Wang, S. J. Liu, L. Z. Guo, S. Dong, G. R. Ma, Z. X. Cao, X. Z. Zhan, X. D. Gu, T. Zhu, Y. P. Cai and F. Huang, *ACS Energy Letter.*, 2020, **5**, 3637-3646.
- W. J. Xu, X. L. Ma, J. H. Son, S. Y. Jeong, L. B. Niu, C. Y. Xu, S. P. Zhang, Z. J. Zhou, J. H. Gao, H. Y. Woo, J. Zhang, J. Wang and F. J. Zhang, *Small*, 2022, **18**, 2104215-2104224.
- 27. H. Chen, T. Zhao, L. Li, P. Tan, H. Lai, Y. Zhu, X. Lai, L. Han, N. Zheng, L. Guo and F. He, Adv. Mater., 2021, 33, 2102778 -2102787.
- 28. H. J. Ning, Q. J. Jiang, P. W. Han, M. Lin, G. Y. Zhang, J. M. Chen, H. Chen, S. Y. Zeng, J. P. Gao, J. G. Liu, F. He and Q. H. Wu, *Energy Environ. Sci.*, 2021, **14**, 5919-5928.
- 29. C. Y. Xu, K. Jin, Z. Xiao, Z. J. Zhao, Y. J. Yan, X. X. Zhu, X. Li, Z. J. Zhou, S. Y. Jeong, L. M. Ding, H. Y. Woo, G. C. Yuan and F. J. Zhang, *Sol. RRL*, 2022, **6**, 2200308-2200317.
- 30. X. L. Ma, Q. J. Jiang, W. J. Xu, C. Y. Xu, S. Young Jeong, H. Young Woo, Q. H. Wu, X. L. Zhang, G. C. Yuan and F. J. Zhang, *Chem. Eng. J.*, 2022, **442**, 136368-136376.
- J. Q. Qin, Q. G. Yang, J. Oh, S. S. Chen, G. O. Odunmbaku, N. A. N. Ouedraogo, C. D. Yang, K. Sun and S. R. Lu, *Adv. Sci.*, 2022, **9**, 2105347-2105354.
- W. Gao, F. Qi, Z. X. Peng, F. R. Lin, K. Jiang, C. Zhong, W. Kaminsky, Z. Q. Guan, C. S. Lee, T. J. Marks, H. Ade and A. K. Jen, *Adv. Mater.*, 2022, **34**, 2202089-2202100.
- Y. N. Wei, Z. H. Chen, G. Y. Lu, N. Yu, C. Q. Li, J. H. Gao, X. B. Gu, X. T. Hao, G. H. Lu,
 Z. Tang, J. Q. Zhang, Z. X. Wei, X. Zhang and H. Huang, *Adv. Mater.*, 2022, 34, 2204718-2204729.