

Fig. S1. The XPS spectra of (a) Ti 2p and (b) Te 3d for TiTe₂ electrode at diverse states.

Supporting Information

Fig. S2. The SEM image with corresponding EDS mapping for TiTe₂.

Fig. S3. The CV curves for the Ti foil electrode without active materials and $TiTe_2$ electrode in 3 M ZnSO₄

electrolyte at 0.6 mV s⁻¹.

Fig. S4. The charge/discharge curves of the non-activated TiTe₂ electrode for the first three cycles at a current

rate of 0.05 A g^{-1} .

Fig. S5. The hydrogen evolution flux upon in situ DEMS test of the TiTe₂ electrode.

Fig. S6. Nyquist plots with the corresponding equivalent circuit for $TiTe_2$ electrode at the pristine state, after 500 cycles, and after 1000 cycles.

Fig. S7. The CV curves of the non-activated $TiTe_2$ electrode for the first five cycles at 0.6 mV s⁻¹.

Fig. S8. The charge and discharge curves for the $TiTe_2$ electrode in the 3 M H_2SO_4 electrolyte.

Fig. S9. (a) The XRD patterns of $Zn_xCo_3O_4$ and Co_3O_4 . (b) The charge/discharge curves for the $Zn_xCo_3O_4$ electrode in the 3 M $ZnSO_4 + 0.2$ M $CoSO_4$ electrolyte. (c) The cycling performances for $Zn_xCo_3O_4$ electrodes in the 3 M $ZnSO_4 + 0.2$ M $CoSO_4$ and 3 M $ZnSO_4$ electrolyte at 0.1 A g^{-1} .

Fig. S10. The rate capability of the $TiTe_2 ||Zn_xCo_3O_4$ pouch cell from 0.1 to 2.0 A g⁻¹.