Atomic-interface strategy and N,O codoping enable WS₂ electrodes with ultrafast ion transport rate in sodium-ion batteries

Meisheng Han, Yongbiao Mu, Yuanyuan Cai, Lei Wei, Lin Zeng*, Tianshou Zhao*

Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of

Science and Technology, Shenzhen 518055, China

SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and

Technology, Shenzhen 518055, China

Department of Mechanical and Energy Engineering, Southern University of Science

and Technology, Shenzhen 518055, China

*Corresponding Author.

E-mail address: zhaots@sustech.edu.cn (T.S. Zhao); zengl3@sustech.edu.cn (L. Zeng)

Experimental section

Synthesis of samples

The DMF and $(NH_4)_2WS_4$ was mixed in the self-made vessels in a distinct amount. Various WS₂/C examples were obtained by varying the proportion of DMF/ $(NH_4)_2WS_4$ of 0.7/0.3 g (WS₂/C-I), 0.8/0.2 g (WS₂/C-II), and 0.9/0.1 g, (WS₂/C-III). After that, these vessels were sealed in an Ar-filled glove box and then transferred to a tube furnace, kept at 650 °C for 20 min in an Ar flow, and subsequently cooled naturally to obtain these samples. As a comparison, pure WS₂ was prepared by heating only 1 g (NH₄)₂WS₄ under the same conditions.

Characterizations

The microstructure and chemical composition were detected by SEM (Hitachi S-4700), TEM (FEI Talos F200x), Raman spectroscopy (Renishaw RM-1000), and XPS (TherW Scientific Escalab 250Xi), as well as EELS (FEI, Titan Themis G2), XRD (D/max-2500/PC, Rigaku), Elemental analysis (Perkinelmrr 2400 Series II) and TGA (Pyris I, PerkinElmer). The Brunauer-Emmett-Teller and Barrett-Joyner-Halenda (ASAP 2020, HD88) were employed to measure the surface area, and pore size distribution. The physical property measurement system (Quantum Design) was used to test the magnetic hysteresis curves. The TGA is tested in air atmosphere.

Electrochemical measurements

For half cells, the working electrodes were prepared by mixing active materials, acetylene black, and polyvinylidene fluoride (PVDF) with 8:1:1 in N-methyl

pyrrolidone solvent, which was then uniformly coated on the copper foil and dried at 85 °C for 12 h under vacuum. 2032 coin-type cells included working electrode, counter/reference electrode (sodium metal), and separator, as well as electrolyte, which were assembled in an Ar-filled glovebox. Whatman glass fiber was used as the separator. 1 M NaClO₄ in ethylene carbonate/dimethyl carbonate (volume ratio of 1:1) with 5% fluoroethylene-carbonate was used as electrolyte. The mass loading of active materials in each electrode slice was 1.2 mg cm⁻². Neware battery-test system (Shenzhen Neware Electronic co., China) was utilized to test the electrochemical performances of cells at current densities of 0.065-13 A g⁻¹ from 0.01 and 3 V. A CHI 760D electrochemical workstation (Shanghai CH Instruments Co., China) was applied to measure CV and electrochemical impedance spectroscopy (EIS). CV was tested at a scanning rate of 0.1-1 mV s⁻¹ from 0.01 to 3 V (vs. Na/Na⁺). EIS was performed from 10⁵ to 10⁻² Hz with an amplitude of 5 mV.

For full cells, the cathode was prepared by mixing 80 wt% $Na_3V_2(PO_4)_2F_3$, 10 wt% acetylene black, and 10 wt% PVDF on Al foil. The mass ratio of anode and cathode was about 1:5. Before assembling full cells, the anode and cathode were electrochemically activated for three cycles at 0.065 A g⁻¹, respectively, to enhance their first CE. The voltage window was 1.0 to 3.5 V. All cells were tested at room temperature.

Computational method: We have employed the plane-wave code Vienna ab-initio simulation package (VASP) program to perform all the spin-polarized DFT calculations within the generalized gradient approximation using the Perdew-Burke-Ernzerhof formulation. We have chosen the projected augmented wave potentials to describe the ionic cores and take valence electrons into account using a plane-wave basis set with a kinetic energy cutoff of 500 eV. Van der Waals (vdW) interactions are included with the DFT-D3 method of Grimme. Partial occupancies of the Kohn–Sham orbitals were allowed using the Gaussian smearing method and a width of 0.02 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10^{-6} eV. To study the Na⁺ diffusion kinetics in the WS₂, diffusion barriers were determined by using the climbing image nudged elastic band (CI-NEB) method.

Modeling description: The equilibrium lattice constants of $[WS_2]$ unit cell was optimized, when using a $15 \times 15 \times 3$ Monkhorst-Pack k-point grid for Brillouin zone sampling to be a=b= 3.18642, c=13.82469 Å. We set 10.8 spacings in the c-axis direction to represent the interlayer spacings of the catalyst. The 10.86% O atom and 8.96% N atom were located in WS₂ model to consider the effect of the co-doped O and N. The 6.34% O atom and 13.03% N atom were located in monolayer C model to consider the effect of the co-doped O and N. During structural optimizations of the models, a $3 \times 3 \times 1$ gamma-point centered k-point grid for Brillouin zone was used. And all the atomic layers were allowed to fully relax.



Figure S1. SEM image of WS₂/C-I.

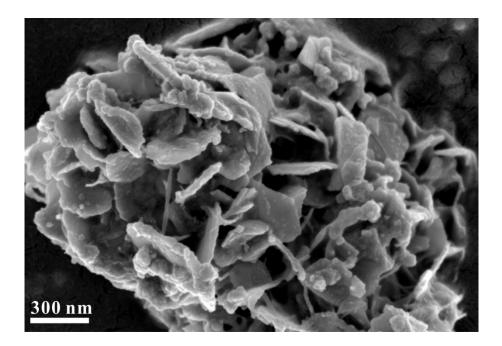


Figure S2. SEM image of WS₂/C-III.

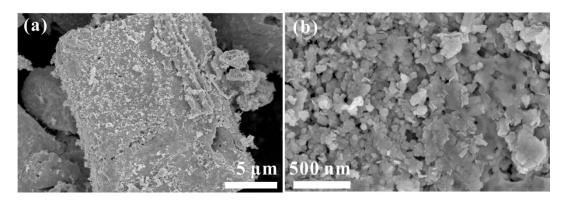


Figure S3. SEM images of WS₂.

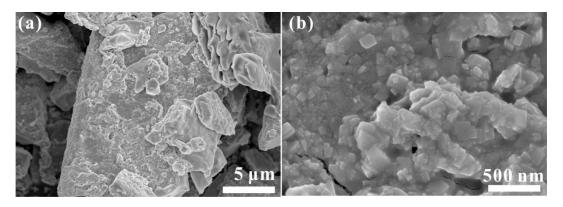


Figure S4. SEM images of (NH₄)₂WS₄.

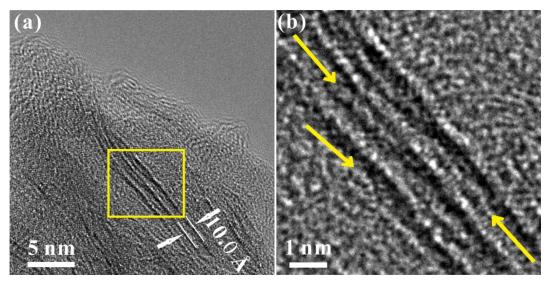


Figure S5. HRTEM images of WS₂/C-I

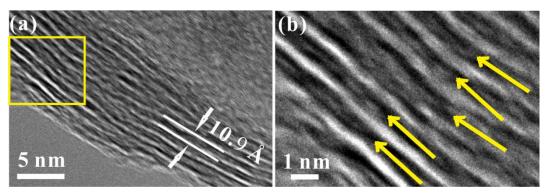


Figure S6. HRTEM images of WS₂/C-III.

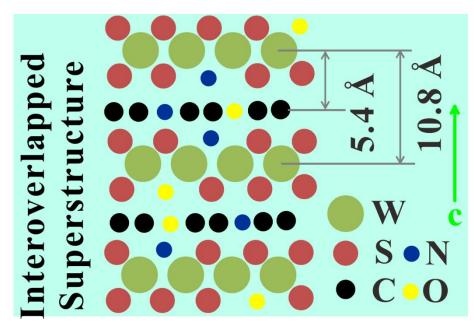


Figure S7. Schematic diagram of atomic structure of NO-WS₂-C

Samples	W (at%)	S (at%)	C (at%)	N (at%)	O (at%)
WS ₂	32.89	64.90	0.89	0	1.32
WS ₂ /C-I	5.52	8.99	68.01	11.36	6.12
WS ₂ /C-II	4.52	6.31	69.23	12.51	7.43
WS ₂ /C-III	3.64	3.90	70.14	13.69	8.63

Table S1 Fitting results of XPS spectra of all the samples.

The atomic ratio of S and W elements in the WS₂, WS₂/C-I, WS₂/C-II and WS₂/C-III is 1.97, 1.63, 1.40 and 1.07, respectively.

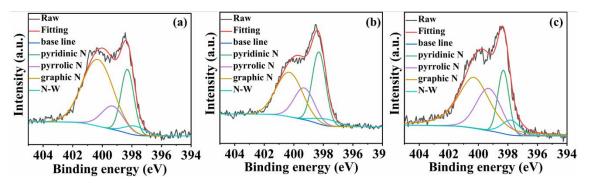


Figure S8. XPS spectra of N 1s of $WS_2/C-II$ (a), $WS_2/C-III$ (b), and $WS_2/C-III$ (c).

Table S2 The percentages of various chemical bonds in N 1s.				
Samples	N-W (%)	Pyridinic/pyrrolic/graphic N (%)		
WS ₂ /C-I	5.49	94.51		
WS ₂ /C-II	10.06	89.94		
WS ₂ /C-III	14.11	85.89		

The results are from Figure S8.

Figure S9. XPS spectra of O 1s of WS₂/C-I (a), WS₂/C-II (b), and WS₂/C-III (c).

Table S3 The percentages of various chemical bonds in O 1s.

Samples	O-W (%)	C-O/C=O (%)
WS ₂ /C-I	13.09	86.91
WS ₂ /C-II	20.78	79.22
WS ₂ /C-III	28.27	71.73

The results are from Figure S9.

Samples	EC (S/cm)
WS ₂	2.1x10 ⁻⁴
WS ₂ /C-I	23.2
WS ₂ /C-II	37.4
WS ₂ /C-III	40.5

Table S4 EC of the obtained samples

Electrical conductivity measurements

First, the obtained powders were added in a hollow cylinder mould with two electrodes on each ends, which were connected with a digital multimeter (Keithley 2001, USA) and followed by compressing powders into slices. During compressing, the electrical resistance was observed constantly. When the electrical resistance kept stable, the sample slices were obtained. Subsequently, the electrical conductivity of slices was measured using a four-probe tester (Probes Tech RTS-8, China)

The doping amount of N and O elements in the carbon materials was calculated by Pyridinic/pyrrolic/graphic N (%)*N (at%)/(C (at%)+Pyridinic/pyrrolic/graphic N (%)*N (at%)+C-O/C=O (%)*O (at%))*100% and C-O/C=O (%)*O (at%)/(C (at%)+Pyridinic/pyrrolic/graphic N (%)*N (at%)+C-O/C=O (%)*O (at%))*100%, respectively. The specific doping amount was represented in **Table S5**.

Samples	N (at%)	O (at%)
WS ₂ /C-I	12.83	5.92
WS ₂ /C-II	13.03	6.34
WS ₂ /C-III	13.34	6.48

Table S5 The doping amount of N and O elements in the carbon materials

The doping amount of N and O elements in the WS₂ materials should be calculated by N-W (%)*N (at%)/[W (at%)+S (at%)+N-W (%)*N (at%)+O-W (%)*O (at%)]*100% and O-W (%)*O (at%)/[W (at%)+S (at%)+N-W (%)*N (at%)+O-W (%)*O (at%)]*100%, respectively. The specific doping amount is represented in **Table S6**.

Samples	N (at%)	O (at%)
WS ₂ /C-I	4.05	5.98
WS ₂ /C-II	8.96	10.86
WS ₂ /C-III	14.21	16.79

Table S6 The doping amount of N and O elements in the WS2 materials

Table S7 The elemental analysis results of the obtained samples.

Samples	C (wt%)	N (wt%)	O (wt%)	WS ₂ (wt%)
WS ₂ /C-I	11.25	3.31	1.88	83.56
WS ₂ /C-II	18.43	5.42	3.97	72.18
WS ₂ /C-III	28.99	7.58	4.64	58.79

The C, N, and O contents in the composites were measured using O/N/H and C/S elemental analyzers. The content of WS_2 was calculated as a difference to 100 wt%.

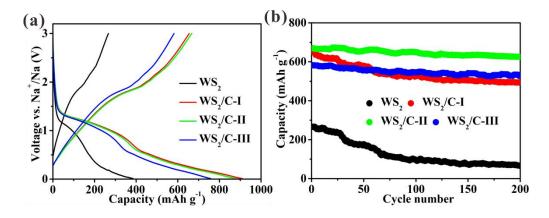


Figure S10 (a) First charge and discharge curves, and (b) cycling performances at

 0.065 Ag^{-1} of the as-prepared samples.

obtained samples. First capacity (mAh g⁻¹) Final capacity (mAh g⁻¹) Capacity retention (%) Samples WS_2 65.7 24.7 266.2 655.3 WS₂/C-I 494.5 75.5 98.9 WS₂/C-II 669.2 661.8

554.6

95.2

582.8

WS₂/C-III

Table S8 The charge capacity and charge capacity retention after 200 cycles of the

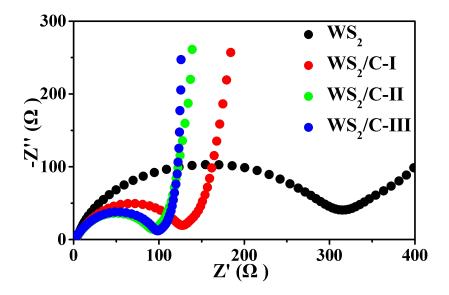


Figure S11. Nyquist plots of the obtained samples before cycling.

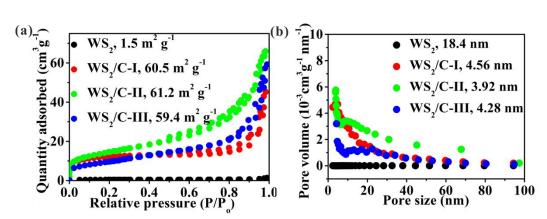


Figure S12. (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution of the obtained samples.

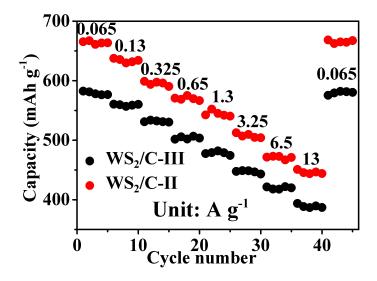


Figure S13. The comparison of rate capability between WS_2/C -II and WS_2/C -III electrodes.

The capacity of WS₂/C-II is 665.5 and 450.8 mAh g⁻¹ at 0.065 and 13 A g⁻¹, respectively. The capacity obtained at 13 A g⁻¹ maintains 67.7% of the capacity obtained at 0.065 A g⁻¹. The capacity of WS₂/C-III is 582.5 and 389.6 mAh g⁻¹ at 0.065 and 13 A g⁻¹, respectively. The capacity obtained at 13 A g⁻¹ maintains 66.9% of the capacity obtained at 0.065 A g⁻¹. The results indicate that the WS₂/C-II has higher capacity and corresponding higher capacity retention at high rate test than that of the WS₂/C-III.

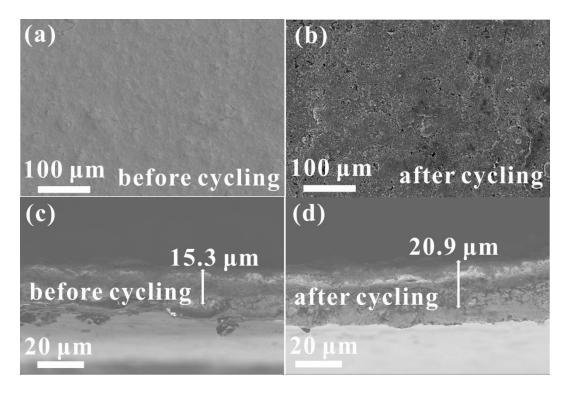


Figure S14 SEM images of WS₂/C-II electrodes before and after 200 cycling.

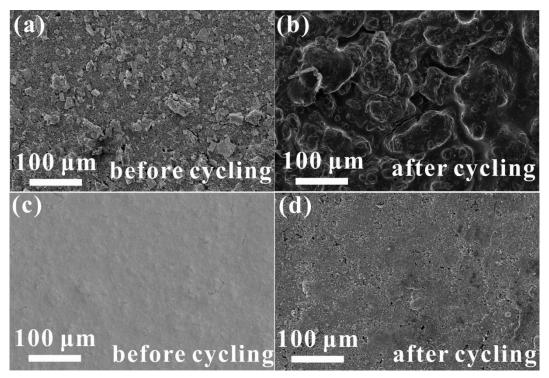


Figure S15. Surface SEM images of pure WS₂(a,b) and WS₂/C-II (c,d) electrodes before and after cycling.

Samples	Initial CE	Reference
WS ₂ /C-II	76.2%	This work
H-WS ₂ @NC	67.7%	Adv. Funct. Mater. 2020, 30, 1907677
WS2 nanoflakes WS2/rGO	55.8%	Sustain. Energy Fuels 2019, 3, 1239.
NGQDs-WS ₂ /3DCF	52.1% 55.2%	Carbon 2019, 142, 697. J. Mater. Chem. A 2018, 6, 10813.
WS ₂ /NC	62.5%	Front. Chem. 2018, 6, 236.
WS ₂ /CNT-rGO WS ₂ nanowires WS ₂ -3D RGO	33.9% 67.6% 56%	Adv. Energy Mater. 2016, 6, 1601057. Chem. Eur. J. 2015, 21, 11878. Nanoscale 2015, 7, 3965

Table S9. Comparison of the initial CE of the WS_2 or nanocomposites of WS_2 and carbon materials as anodes for SIBs with our work.

Table S10 The specific references about capacity comparison of WS₂-based SIB anodes after long cycling under high current denisities from Figure 4h in the manuscript. C_C-charge capacity (mAh g^{-1}) after cycling, J-current density (A g^{-1}), N_C-cycle number.

Samples	C_{C}	J	N_{C}	References
WS ₂ /C-II	518.2	1.3	3000	This work
WS ₂ /C-II	378.3	6.5	3000	This work
FeS ₂ /WS ₂ -CNFs	307.6	4	1000	Chem. Eng. J. 427 (2022) 131002
H-WS2@NC	375	1	1000	Adv. Funct. Mater. 30 (2020) 1907677
WS ₂ /CFC@C-P	297	2	500	Chem. Eng. J. 411 (2021) 128554
$1T W_{0.9} Mo_{0.1} S_2$	411	0.1	180	J. Energy Chemistry 66 (2022) 356-365
WS2@NC	150	5	500	J. Mater. Chem. A, 5 (2017) 10406-10415
NGQDs-WS ₂ /3DCF	392.1	0.2	1000	J. Mater. Chem. A, 6 (2018) 10813-10824
HB WS2@CNFs	343	2	300	Small, 16 (2020) 2000695
WS ₂ Nanowires	370	1	1400	Chem. Eur. J. 21 (2015) 11878-11884

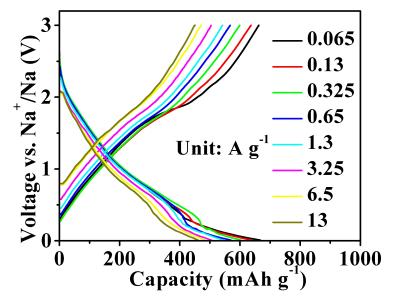


Figure S16. Charge/discharge curves at differenct current densities of WS₂/C-II

Table S11 The specific references about comparison of rate performances ofWS2-based SIB anodes from Figure 4i in the manuscript.

Samples	References
WS ₂ /C-II	This work
FeS ₂ /WS ₂ -CNFs	Chem. Eng. J. 427 (2022) 131002
H-WS2@NC	Adv. Funct. Mater. 30 (2020) 1907677
WS ₂ /CFC@C-P	Chem. Eng. J. 411 (2021) 128554
$1T W_{0.9} Mo_{0.1} S_2$	J. Energy Chemistry 66 (2022) 356-365
WS ₂ /CNT-rGO Aerogel	Adv. Energy Mater. 6 (2016) 1601057
NGQDs-WS ₂ /3DCF	J. Mater. Chem. A, 6 (2018) 10813–10824
HB WS2@CNFs	Small, 16 (2020) 2000695

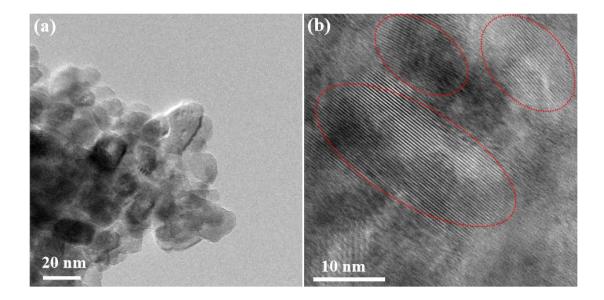
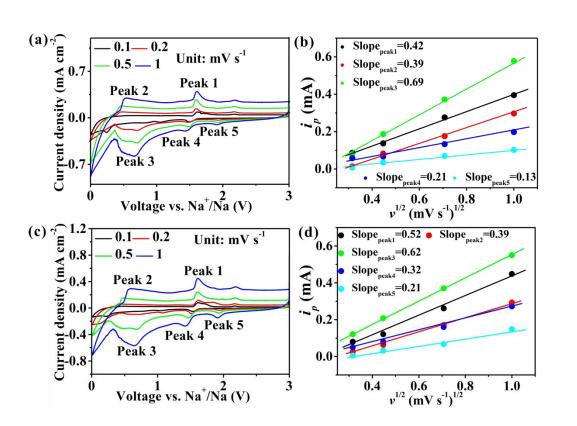



Figure S17. TEM images of pure WS₂ electrode after discharging to 0.01 V.

Na-Ion Concentration Calculation

At first, the unit cell volume of WS₂ is calculated to be "a (3.15 Å) × b (3.15 Å) × c (12.27 Å) × sin120° = 105.44 × 10⁻²⁴ cm³", thus 1 cm³ includes 1/105.44 × 10⁻²⁴ = 9.48 × 10²¹ unit cells. The charge capacities of WS₂/C-I, WS₂/C-II, and WS₂/C-III can reach 655.3, 669.2, and 582.8 mAh g⁻¹, respectively during the initial cycling, corresponding to 1.52, 1.55, and 1.35 Na⁺ insertion into WS₂ per formula unit to form the Na_{1.52}WS₂, Na_{1.55}WS₂, and Na_{1.35}WS₂, respectively. In addition, every WS₂ unit cell includes two molecules, and each molecule includes 1.52, 1.55, and 1.35 Na^{-ions}, 1 cm³ contains 9.48 × 10²¹/(6.02 × 10²³) × 2 × 1.55 = 4.79 × 10⁻², 4.88 × 10⁻², and 4.25× 10⁻² mol Na-ions for WS₂/C-I, WS₂/C-II, and WS₂/C-III electrode is about 4.79 × 10⁻², 4.88 × 10⁻², and 4.25× 10⁻² mol cm⁻³, respectively.

Figure S18. Kinetic analysis of WS₂/C-I (a,b) and WS₂/C-III (c,d). (a,c) CV curves from 0.1 to 1 mV s⁻¹; (b,d) Linear relationship between i_p and $v^{1/2}$.

Samples	D_{Na^+}	References
WS ₂ /C-II	1.50 × 10 ⁻⁹	This work
bare WS ₂	2.42×10 ⁻¹⁵	Adv. Funct. Mater. 30 (2020) 1907677
S-WS ₂ @NC	5.29×10 ⁻¹⁴	Adv. Funct. Mater. 30 (2020) 1907677
H-WS2@NC	8.23×10 ⁻¹³	Adv. Funct. Mater. 30 (2020) 1907677
Vertical WS ₂ /C	2.14×10 ⁻¹⁰	J. Mater. Chem. A 7 (2019) 25985-25992
FeS ₂ /WS ₂ -CNFs	1.12×10 ⁻¹⁴	Chem. Eng. J. 427 (2022) 131002
WS ₂ /CFC@C-P	5.25×10 ⁻¹²	Chem. Eng. J. 411 (2021) 128554
WS ₂ /CFC	5.25×10 ⁻¹³	Chem. Eng. J. 411 (2021) 128554
1T W _{0.9} Mo _{0.1} S ₂	7×10 ⁻¹⁰	J. Energy Chemistry 66 (2022) 356-365

Table S12 The specific references about comparison of D_{Na^+} (cm² s⁻¹) values of our WS₂/C-II and recently reported anode materials for SIBs.

Samples	Current density	Specific capacity (mAh g ⁻¹)	The capacity is calculated based on	References
WS ₂ /C-II	1.95 A g ⁻¹	429.6 after 300 cycles	anode	This work
VA/LT-WS ₂ /C	0.05 A g ⁻¹	133 after 50 cycles	anode	Energy Storage Mater. 26 (2020) 534-542
WS _{2-X} /ZnS@ C	1 A g ⁻¹	89 after 500 cycles	anode	Adv. Mater. 32 (2020) 2005802
H-WS2@NC	$0.5 \mathrm{A g^{-1}}$	296 after 200 cycles	anode	Adv. Funct. Mater. 30 (2020) 1907677
$1T \\ W_{0.9}Mo_{0.1}S_2$	1 A g ⁻¹	143 after 50 cycles	anode	J. Energy Chemistry 66 (2022) 356-365

Table S13. The comparison of electrochemical performances for the full cells.