Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

MgO-template Synthesis of Hollow N/O Dual Doped Carbon Boxes as Extremely Stable Anode for Potassium Ion Batteries

Jianding Li^{a, #, *}, Yun Zheng^{b, #}, Wei Chen^c, Wenshuai Zhu^a, Yongyang Zhu^{d, *}, Huajun Zhao^b, Xiaozhi Bao^b, Liqing He^{e, *}, Linfeng Zhang^{f, *}

^a Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Huzhou 313000, China

 ^b Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
^c School of Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China

^d Institute of Resources Utilization and Rare Earth Development, Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Guangdong Academy of Sciences, Guangzhou 510650, China

^e Hefei General Machinery Research Institute Co., Ltd, Hefei 230031, China

^f School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

[#] Equally contributing first author.

* Corresponding author:

E-mail addresses: jiandingli@zjhu.edu.cn (J. Li)

yongyangzhu2016@163.com (Y. Zhu) heli limao@163.com (L. He) lfzhang@wit.edu.cn (L. Zhang)

Fig. S1. XRD pattern of MgCO₃, MgO, MgO-PDA and MgO-PDA-800.

Fig. S2. SEM images of MgCO₃ (a), MgO (b), MgO-PDA (c); SEM images (d, i) and corresponding element mappings (e-h) of MgO-PDA-800; SEM images of H-NOCBs (j-l).

Fig. S3. Long-term cyclic stability of H-NOCBs at 500 mAh g^{-1} for 2500 cycles.

Fig. S4. a) Schematic illustration of the full cell employing H-NOCBs as the anode and TiS_2 as the cathode; b) initial three charge/discharge curves of TiS_2 as cathodes in a half cell at 100 mA g⁻¹; c-d) initial charge/discharge profile and cyclic stability of full cell at 100 mA g⁻¹; e-f) Photograph of an LED powered by the TiS_2/H -NOCBs full cell.

Table S1.	Comparison	of potassium	n ion storage	e capabilities	of carbon-based	anodes
reported	recently.					

Matariala	Current density	Cycle	Capacity	Reference	
IVIdLefidis	(A g ⁻¹)	number	(mAh g ⁻¹)		
	0.5	2500	178.8	- This work	
	1	3000	167.8		
H-NOCBS	1	5000	123.7		
	1	10000	123.3		
Amorphous ordered		1000	110 5	[1]	
mesoporous carbon	1	1000	146.5	[±]	
oxygen-rich carbon	0.270	900	192.7	[2]	
microspheres	0.279				
Biomorphic N-doped	1	1000	119.9	[3]	
carbon	L				
N/O dual-doped hard	1	5000	189.5	[4]	
carbon	L				
Honeycomb-like nitrogen-	1	2000	143.0	[5]	
doped carbon	L L				
S/N co-doping graphene	1	2000	188.8	[6]	
nanosheets	L				
Nitrogen doped soft	1	500	165	[7]	
carbon frameworks	T	500			
Nitrogen/oxygen co-doped		300	131	[8]	
graphene-like carbon	0.5				
nanocages					
Nano-size porous carbon	1	1500	165.2	[9]	
spheres	L				
Few-layer nitrogen-doped	0.5	500	150.0	[10]	
graphene	0.5				
N-doped necklace-like	1	1600	161.3	[11]	
hollow carbon	I	1000			
N-doped hollow carbon	1	2500	154	[12]	
nanosphere		2300	154		
N-doped carbon	1	2000	164	[13]	
nanofibers	2	4000	146		
Mesoporous carbon	1	2000	178	[14]	
Nitrogen-doped					
mesoporous carbon	1	3600	113.9	[15]	
spheres					
hollow N-doped carbon	1	800	160	[16]	
Three-dimensional	1	2000	161 7	[17]	
carbonaceous material	L	2000	101.7		
F and N codoped carbon	Ę	4000	131	[18]	
nanosheets	S				
N/O co-doped mesoporous	1	1300	100	[19]	
carbon octahedrons	T			1	

References

[1] W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, *Advanced Energy Materials*, 2018, **8**, 1701648.

[2] W. Xiong, J. Zhang, Y. Xiao, Y. Zhu, Z. Wang, Z. Lu, *Chemical Communication*, 2020, 56, 3433.

[3] C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang, Y. Liu, A. Hao, R. Guo, *Journal of Power Sources*, 2019, **415**, 165.

[4] R.C. Cui, B. Xu, H.J. Dong, C.C. Yang, Q. Jiang, Advanced Science, 2020, 7, 1902547.

[5] J. Li, Y. Li, X. Ma, K. Zhang, J. Hu, C. Yang, M. Liu, *Chemical Engineering Journal*, 2020, **384**, 123328.

[6] W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv, W. Zhang, W. Zhang, Q. Sun, S. Guo, ACS Energy Letters, 2020, 5, 1653.

[7] C. Liu, N. Xiao, H. Li, Q. Dong, Y. Wang, H. Li, S. Wang, X. Zhang, J. Qiu, *Chemical Engineering Journal*, 2020, **382**, 121759.

[8] Y. Sun, D. Zhu, Z. Liang, Y. Zhao, W. Tian, X. Ren, J. Wang, X. Li, Y. Gao, W. Wen, Y.
Huang, X. Li, R. Tai, *Carbon*, 2020, **167**, 685.

[9] H. Zhang, C. Luo, H. He, H.H. Wu, L. Zhang, Q. Zhang, H. Wang, M.S. Wang, Nanoscale Horizons, 2020, 5, 895.

[10] Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang, Y. Qian, *Energy Storage Materials*, 2018, **11**, 38.

[11] W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang, F. Lv, K. Wang, Q. Sun, S. Guo, Energy & Environmental Science, 2019, **12**, 1605.

[12] J. Ruan, X. Wu, Y. Wang, S. Zheng, D. Sun, Y. Song, M. Chen, *Journal of Materials Chemistry A*, 2019, **7**, 19305.

[13] Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, *Nature Communications*, 2018, 9, 1720.

[14] H. Tan, X. Du, R. Zhou, Z. Hou, B. Zhang, *Carbon*, 2021, **176**, 383.

[15] J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun, H. Li, L. Niu, *Nanomicro Lett*, 2021, 13, 174.

[16] W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge, J. Hu, W. Wei, G. Zou, H. Hou, X. Ji,

Nano Energy, 2019, **65**, 104038.

[17] J. Du, S. Gao, P. Shi, J. Fan, Q. Xu, Y. Min, *Journal of Power Sources*, 2020, **451**, 227727.

[18] Y. Jiang, Y. Yang, R. Xu, X. Cheng, H. Huang, P. Shi, Y. Yao, H. Yang, D. Li, X. Zhou,Q. Chen, Y. Feng, X. Rui, Y. Yu, ACS Nano, 2021, 15, 10217.

[19] G. Xia, C. Wang, P. Jiang, J. Lu, J. Diao, Q. Chen, *Journal of Materials Chemistry A*, 2019, 7, 12317.