Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Penta-OsP2 and Penta-RhS2 Sheets Derived from Marcasite and Pyrite with Low

Lattice Thermal Conductivity

Yiheng Shen,^a Jie Sun,^a Yanyan Chen,^a Dongyuan Ni,^a Tingwei Li,^a Akira

Yoshikawa,^b Yoshiyuki Kawazoe,^c and Qian Wang*a

^a CAPT, School of Materials Science and Engineering, BKL-MEMD, Peking University, Beijing 100871, China.

^b Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan;

^c New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8577, Japan;

Department of Physics, Suranaree University of Technology, 30000 Nakhon Ratchasima, Thailand; Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.

* Author to whom any correspondence should be addressed: <u>qianwang2@pku.edu.cn</u>

Fig. S1 (a) Geometry, (b) phonon band structure, and (c) imaginary phonon modes of the tetragonal RhS_2 sheet with the penta- CN_2 configuration. (d) Geometry and (e) phonon band structure of the orthorhombic RhS_2 sheet with the penta-PdSe₂ configuration.

Text S1 Thermal stability of penta-RhS2 at 600 K

We perform an AIMD simulation for a $3 \times 3 \times 1$ supercell of the penta-RhS₂ primitive cell under the NPT ensemble (600 K and 100 kPa) for a simulation time of 10 ps with a time step of 1 fs. The variation of the supercell size with the simulation time is plotted in Fig. S2(a). We use the average lattice parameters from the last 5 ps as the reasonable size of the supercell for the following up NVT simulation at 600 K. The lattice parameter *a* (*b*) slightly shrinks from the original value of 13.41 Å to 13.32 (13.12) Å due to the expansion in the out-of-plane direction. As shown in Fig. S2(b), the total potential energy shifts toward a lower energy level during the NVT simulation, which is consistent with our original result that penta-RhS₂ is thermally unstable above 500 K.

Fig. S2 Vibration of (a) the size of penta-RhS₂ supercell in NPT simulation, and (b) the total potential energy of the supercell in NVT simulation with simulation time.

Text S2 Mechanical properties of penta-OsP2 of and penta-RhS2

We calculate the Young's modulus E and Poisson's ratio v of penta-OsP₂ and penta-RhS₂ from their stiffness tensor components C_{ij} based on the following equations:

$$E(\theta) = \frac{C_{11}C_{22} - C_{12}^2}{C_{11}s^4 + C_{22}c^4 + \left(\frac{C_{11}C_{22} - C_{12}^2}{C_{66}} - 2C_{12}\right)s^2c^2},$$
(S1)

and

$$v(\theta) = \frac{C_{12} \left(s^{4} + c^{4}\right) - \left(C_{11} + C_{22} - \frac{C_{11}C_{22} - C_{12}^{2}}{C_{66}}\right)s^{2}c^{2}}{C_{11}s^{4} + C_{22}c^{4} + \left(\frac{C_{11}C_{22} - C_{12}^{2}}{C_{66}} - 2C_{12}\right)s^{2}c^{2}},$$
(S2)

where θ is the angle between a specific in-plane direction and the crystalline orientation [100], $s = \sin\theta$, and $c = \cos\theta$. The calculated results are plotted in Fig. S2. The Young's

modulus of penta-OsP₂ exhibits strong anisotropy. The Young's modulus along the stiffer x axis (94.96 GPa·nm) is three times larger than that along the y axis (29.14 GPa·nm), while a maximal value of 105.06 GPa·nm is found at $\theta = 24^{\circ}$ and its equivalents, which coincide with the [210] direction in penta-OsP₂. In contrast, the Young's modulus of penta-RhS₂ shows weak anisotropy along the axial directions x (65.18 GPa·nm) and y (61.76 GPa·nm), with a minimal Young's modulus of 30.86 GPa·nm found at $\theta = 45^{\circ}$. It is worth mentioning that, while materials with similar geometric structure and heavier atoms tend to have lower Young's modulus, penta-OsP₂ and penta-RhS₂ serve as a counter example where penta-OsP₂ with heavier Os atom is stiffer along most directions.

The Poisson's ratios of penta-OsP₂ of and penta-RhS₂ along the axial directions also show strong and weak anisotropy, respectively. The Poisson's ratio of penta-OsP₂ has its maximum value of 0.56 along the *x* axis and its minimum value of -0.24 at $\theta =$ 41°, corresponding to the [110] direction in penta-OsP₂. While, the maximum (0.61) and minimum (0.19) of the Poisson's ratios of penta-RhS₂ are found at $\theta = 44^{\circ}$ and 90°, respectively.

Fig. S3 (a) Young's modulus, and (b) Poisson's ratio of penta- OsP_2 , penta- RhS_2 , and penta- PdS_2 with respect to the orientation of external stress. The blue dashed lines indicate the negative Poisson's ratio.

Fig. S4 First Brillouin zone and high-symmetry path of (a) the unit cell of penta- OsP_2 and (b) the primitive cell of penta- RhS_2 .

Fig. S5 (a) Geometry, (b) electronic band structure and (c) phonon spectrum of penta-PdS₂. (d) Total potential energy fluctuation of penta-PdS₂ with a $3 \times 3 \times 1$ supercell during AIMD simulations.

Fig. S6 Overall scattering rate ω of (a) penta-OsP₂, (b) penta-RhS₂, and (c) penta-PdS₂.

Fig. S7 Trajectory of the atoms in the supercell of (a) penta-OsP₂, (b) penta-RhS₂, and (c) penta-PdS₂ during AIMD simulations at 300 K.

Table S1 Cutoff radii r_{2nd} , r_{3rd} and r_{4th} (in Å) used in the HiPhive fitting in penta-OsP₂, penta-RhS₂ and penta-PdS₂, and the corresponding number of parameters (n_{para}), number of target values (n_{target}), and the goodness of fit (R^2) in the training set and test set, respectively.

Structure	r _{2nd}	r _{3rd}	r _{4th}	<i>n</i> _{para}	<i>n</i> _{target}	R^2_{train}	R^2_{test}
penta-OsP ₂	7.8	6.0	3.2	7027	43200	0.99979	0.99969
penta-RhS ₂	8.9	6.0	3.2	8740	57600	0.99936	0.99898
penta-PdS ₂	10.9	6.0	3.2	2100	17280	0.99998	0.99997

penta-OsP ₂		penta-RhS ₂	
Atom	Bader charge	Atom	Bader charge
2a ₁ Os	0.02	4b ₁ Rh	-0.27
2a ₂ P	-0.03	4b ₂ S	0.11
2a ₃ P	0.01	2a ₁ S	0.18
		2a ₂ S	0.13

Table S2 Bader charge distribution (in number of electrons) on the atoms in penta- OsP_2 and penta- RhS_2 .

Table S3 Deformation potential E_1 (in eV), effective mass m^* (normalized by the mass of an electron), and the mobility μ (in cm²·V⁻¹·s⁻¹) of holes and electrons in penta-OsP₂, penta-RhS₂ and penta-PdS₂ along the *x* and *y* directions at 300 K.

Structure	Direction	Carrier	E_1	<i>m</i> *	μ
penta-OsP ₂	x	electron	-1.75	0.31	1857.09
	x	hole	-1.52	-0.42	273.64
	У	electron	-3.46	0.79	404.25
	У	hole	-4.11	-11.60	4.86
penta-RhS ₂	x	electron	-8.02	2.69	3.59
	x	hole	-4.80	-0.33	180.55
	У	electron	-3.62	4.58	2.99
	У	hole	-6.34	-1.95	26.51
penta-PdS ₂	x	electron	-7.72	1.17	25.40
	x	hole	-3.80	-3.74	9.36
	У	electron	-7.17	0.46	67.60
	У	hole	-3.50	-2.13	18.56