Supplementary information

Durable VO₂ transition layer and defect inactivation in BiVO₄ via spontaneous

valence-charge control

Dong Su Kim,^{a,1} Kun Woong Lee,^{a,1} Ji Hoon Choi,^a Hak Hyeon Lee,^a Hee Won Suh^a, Ho Seong Lee^c and Hyung Koun Cho^{a,b,*}

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu,

Suwon-si, Gyeonggi-do, 16419, Republic of Korea.

^b Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangangu, Suwon, Gyeonggi-do, Republic of Korea.

^c School of Materials Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.

* Corresponding author.

¹ The authors contributed equally to this work.

Tel.: +82 31 290 7364; Fax: +82 31 290 7410; E-mail: chohk@skku.edu

Fast transport & Recombination decrease

Fig. S1 Comparison of SEM images of the $BiVO_4$ thin film at different annealing temperatures of (a) 450, (b) 500, (c) 550, and (d) 580 °C in the sol-gel process. As the temperature increases, the crystallinity and grain size of the surface increase, and the grain boundary that act as surface defects tends to decrease. Consequently, the mobility of charge carriers increases, and the recombination of charge decreases.

Fig. S2 Evaluations of the BiVO₄ thin film at different annealing temperatures (450, 500, 550, and 580 °C). (a) Ultraviolet–visible absorption spectra of BiVO₄ and FTO substrates with an integrating sphere from 300 to 800 nm. (b) Linear-sweep voltammetry of BiVO₄ photoanodes in 1.0 M PB electrolyte with 0.1M Na₂SO₃ as hole scavenger under AM 1.5 G illumination (100 mW cm⁻²) with a scan rate of 10 mV s⁻¹.

Fig. S3 TEM images of pristine $BiVO_4$ formed through the optimal sol-gel process with an accelerating voltage of 200 KeV. (a) Cross-sectional image of $BiVO_4$ in the form of thin film over 100 nm on the FTO Substrate. (b) High-resolution (HR)TEM image of the $BiVO_4$. (c) STEM-EDS elemental mappings of Bi, V, O, and Sn in the $BiVO_4$ thin film.

Fig. S4 Fitted XPS spectra of V2*p* and Bi4*f* of pristine BiVO₄ and BiVO₄ after *J*-*t* stress for 100 min in the PB electrolyte. (a) is V2*p* of pristine BiVO₄, (b) is V2*p* of BiVO₄ after *J*-*t* stress, (c) is Bi4*f* of pristine BiVO₄, and (d) is Bi4*f* of BiVO₄ after *J*-*t* stress. In (a), the red area means V⁵⁺ and the blue area means V⁴⁺ fitting area. In (b), which was measured in PEC_(aq), photo-corrosion occurred because of the long measurement time, and therefore, V2*p* could not be confirmed in XPS spectra. In (c), the yellow area means Bi³⁺ and the orange area means Bi⁰ (metallic) fitting area in XPS spectra.

Fig. S5 Ultraviolet-visible absorption spectra of pristine $BiVO_4$ and $BiVO_4$ after *J*-*t* stress at 1.23 V_{RHE} for 50 and 100 min. The spectra after stress are affected by the bulk as well as the surface properties through photo-corrosion by external applied bias and illumination, and thus, show differences in optical properties.

Fig. S6 Optical images of BiVO₄ before (black) and after *J*-*t* stress (CA: chronoamperometry) at 1.23 V_{RHE} for 50 and 100 min. As *J*-*t* was measured, photo-corrosion occurred on the film surface exposed to light (0.8 \times 0.8 cm²) (orange) and partial peeling occurred intensively in the region where photo-corrosion has progressed (red), according to the photo-corrosion process in Figure 1e. BiVO₄ partially peeled by photo-corrosion loses its photo-absorber function.

Fig. S7 (a) Fitted XPS spectra of V2p BiVO₄ after J-t stress in SRE_{aq}. The ratio of V⁵⁺ and V⁴⁺ is shown in the inset table. (b) ICP-OES data showing the ion concentration of Bi and V in pristine BiVO₄ and BiVO₄ after J-t stress in SRE_{aq}.

Fig. S8 CA of BiVO₄ measured for 5000 s in PEC electrolyte saturated with V⁵⁺ (green) and re-measured in normal PEC electrolyte (red) under AM 1.5 G illumination (100 mW cm⁻²) with a scan rate of 10 mV s⁻¹.

Fig. S9 (a) LSV of $BiVO_4$ in electrolyte saturated with V⁴⁺ (red line) and (b) LSV plot of $BiVO_4$ in electrolyte saturated with V⁵⁺ (green line) under AM 1.5 G illumination (100 mW cm⁻²) with a scan rate of 10 mV s⁻¹. The electrolyte saturated with V⁴⁺ is prepared by adding 0.1M VOSO₄ directly to the PB electrolyte.

Fig. S10 SEM images of the surface-morphology change of $BiVO_4$ depending on SPO process time: (a) before SPO, and after (b) 500, (c) 1000, and (d) 5000 s.

Fig. S11 Fitted XPS spectra of $V2p_{3/2}$ of pristine BiVO₄ and BiVO₄ after *J*-*t* stress for 5000 s in different electrolytes: (a) pristine; (b) in PEC_(aq); (c) in V⁵⁺_(aq); (d) in SRE_(aq); (e) in V⁵⁺SRE_(aq). The red and blue areas are V⁵⁺ and V⁴⁺ fitting areas, respectively.

Fig. S12 HR-TEM images of the $BiVO_4/VO_2/CoFeO_x$ photoanode obtained at an accelerating voltage of 200 keV. (a) Cross-sectional image of the photoanode on the FTO Substrate. (b), (c), and (d) Enlarged HRTEM images of the photoanode.

Fig. S13 EDX line profiling of BiVO₄/VO₂/CoFeO_x photoanode.

Fig. S14 SEM images of the surface morphology change of BiVO₄ after *J*-*t* stress in different electrolytes for 5000 s. (a) in $PEC_{(aq)}$, (b) in $V^{5+}_{(aq)}$, (c) in $SRE_{(aq)}$, and (d) is in $V^{5+}SRE_{(aq)}$.

Fig. S15 (a) Equivalent circuit for $BiVO_4$ (top) and $BiVO_4/VO_2$ (bottom) photoanodes. (b) Bode phase plot of the photoanodes. (c) Bode plots of phase and magnitude of Z against frequency in the dark and illuminated states.

Fig. S16 (a) Cyclic voltammetry of BiVO₄ from 0 to 2.0 V_{RHE} . (b) Consecutive-linear-sweep voltammetry (30 cycles) plot of BiVO₄ at from 1.7 to 2.0 V_{RHE} in the CoFeO_x deposition solution under AM 1.5 G illumination (100 mW cm⁻²) with a scan rate of 10 mV s⁻¹.

Fig. S17 LSV of photoanodes from 0 to 2.0 V_{RHE} in the PB electrolyte in a dark state with a scan rate of 10 mV s⁻¹: (a) pristine BiVO₄; (b) BiVO₄/VO₂; (c) BiVO₄/CoFeO_x; (d) BiVO₄/VO₂/CoFeO_x photoanodes.

Table S1 Comparison of V⁴⁺ and V⁵⁺ fitting-area ratios and binding energies at V2 $p_{3/2}$ peak of X-ray photoelectron spectra of pristine BiVO₄ and BiVO₄ after *J*-*t* stress in different electrolytes.

	Pristine BiVO ₄	BiVO ₄ :	D:1/O -1/5+		BiVO ₄ :
		PEC _(aq)	BIVO4:V	BIVO4:SRE	[V ⁵⁺ SRE]
V ⁴⁺ /V ⁵⁺ area ratio	0.14	Corrosion	0.12	0.77	7.63
position, eV)	(516.60)	(516.35)	(516.36)	(516.15)	(515.81)

Table S2 Comparison of X-ray photoelectron peak intensities of Bi*4f*, V2*p*, and O1*s* in pristine BiVO₄ and BiVO₄ after *J*-*t* stress in different electrolytes. In the $PEC_{(aq)}$ condition, the calculated V2*p* value is remarkably low, because of V⁵⁺ dissolution by photo-corrosion.

	Pristine BiVO ₄	BiVO ₄ :PEC _(aq)	BiVO.·V⁵+	BiVO	BiVO ₄ :
			51104.1	BIV 04.5ML	[V ⁵⁺ SRE]
Bi4f	15.51	20.41	14.42	16.48	12.92
V2p	11.57	0.59	8.25	10.73	13.24
01 s	72.92	79.00	77.33	72.79	73.84

Table S3 Comparison of EDX composition results in the bulk regions of pristine BiVO₄ and BiVO₄ after *J*-*t* stress in different electrolytes. The decrease of Bi4*f* and increase of V2*p* through surface photoelectrochemical oxidation resulted in a 1:1 ratio of Bi and V, indicating modification of unstable BiVO₄.

	Pristine BiVO ₄	BiVO ₄ :PEC _(aq)	BiVO₄:V⁵+	BiVO₄:SRE	BiVO₄: [V⁵+SRE]
Bi4f	5.41	5.57	5.48	5.42	5.50
V2p	4.02	3.46	4.14	4.62	5.89
01s	70.37	70.70	70.05	69.73	68.51
Sn	20.20	20.27	20.33	20.23	20.10

Table S4 Performance comparison. Comparison of photoelectrochemical performances of photoanodes composed of protection layers and oxygen-evolution catalysts based on pristine $BiVO_4$. J_{ph}^{11} is the photocurrent density (mA cm⁻²) of a single layer of pristine $BiVO_4$ at 1.23 V_{RHE} ; J_{ph}^{21} is the photocurrent density (mA cm⁻²) of $BiVO_4$ having oxygen evolution catalysts, V_{onset} (V_{RHE}) denotes the onset potential.

Structure	Method	$J_{ph}^{1)}$	$J_{ph}^{2)}$	Stability	\mathbf{V}_{onset}	ABPE (%)	Electrolyte	Ref.
BiVO ₄ /VO ₂ /CoFeO _x	Sol-gel/SPO/PED	1.3	6.2 个个	100 h (1.23 V)	0.25	2.40 个个	РВ	This work
Mo:BiVO ₄ /Co-Ci	Sol-gel/PED	1.2	4.7	1 h (1.0 V)	0.30	-	Bicarbonate	[1]
N ₂ :BiVO ₄ /FeOOH/NiOOH	ED/ED	1.4	4.8	500 h (0.6 V)	0.22	2.20 个	KPi	[2]
Mo:BiVO ₄ /Co-Pi	Dip coating/PED	1.9	4.6	-	0.48	1.09	KPi	[3]
[001] BiVO ₄ /Co-Pi	Laser ablation/ED	3.9 个个	6.1 个	6 h (0.6 V)	0.15	-	КРі	[4]
Mo:BiVO ₄ /NiOOH/FeOOH	MOD/PED	2.0	5.0	8 h (1.15 V)	0.20	2.08	Potassium chloride	[5]
BiVO ₄ /Co(Co ₃) _x OH _y	ED/Hydrothermal method	1.9	5.1	20 h (0.6 V)	0.20	1.87	РВ	[6]
BiVO ₄ /NiFeO _x	ED/PED	2.9	5.0	10 h (0.6 V)	0.23	2.25	РВ	[7]
BiVO ₄ /NiFeOOH/Co-Ci	Dip coating/PED	1.0	4.1	3 h (1.23 V)	0.30	0.95	Na_2SO_4	[8]
Mo:BiVO ₄ /RhO ₂	Drop casting/MOD	2.1	2.7	12 h (1.23 V)	0.25	-	Sea water	[9]
BiVO ₄ /Al ₂ O ₃	Drop casting/ALD	0.5	1.0	-	0.30	-	Phosphate buffer	[10]
BiVO ₄ /Al ₂ O ₃	Hydrothermal method/ED	0.4	0.5	7.5 h (1.23V)	0.38	-	Sodium phosphate	[11]
BiVO ₄ /PdO	ED/ED	1.8	4.9 个	80 h (0.6 V)	0.20	1.72	РВ	[12]
BiVO ₄ /NiO _x	Sol-gel/ED	0.3	1.6	1 h (1.23 V)	0.31	-	Sodium borate	[13]
BiVO ₄ /TiO ₂	ED/ALD	0.6	1.1	40 th cycles LSV	0.41	-	КРі	[14]
BiVO ₄ /R:TiO ₂	ED/ALD	0.8	2.1	6 h (0.9 V)	0.20	-	РВ	[15]
BiVO ₄ /BiFeO ₃	Hydrothermal method/Sol-gel	0.2	0.6	2 h (0.6 V)	0.40	-	КРі	[16]
BiVO ₄ /A:TiO ₂	ED/ALD	1.3	3.0	3h (1.23 V)	0.53	-	Na ₂ SO ₄	[17]
C:BiVO ₄ /CQDs	ED/Hydrothermal method	1.4	4.8	9h (0.6 V)	0.25	1.61	Borate buffer	[18]
Mo:BiVO ₄ /Nb:TiO ₂ /FeNiO _x	MOD/ALD/ED	1.5	5.6	16 h (1.23 V)	0.51	-	H₃PO₄ + NaOH	[19]
BiVO ₄ /ZnFe2O ₄ /Co ²⁺	ED/PED/Dip coating	1.0	3.0	1 h (1.23 V)	0.40	-	Potassium hydroxide	[20]

References

1 J. H. Kim, Y. Jo, J. H. Kim, J. W. Jang, H. J. Kang, Y. H. Lee, D. S. Kim, Y. Jun and J. S. Lee, *ACS Nano*, 2015, **9**, 11820–11829.

2 T. W. Kim, Y. Ping, G. A. Galli and K. S. Choi, Nat. Commun., 2015, 6, 1–10.

3 M. Rohloff, B. Anke, S. Zhang, U. Gernert, C. Scheu, M. Lerch and A. Fischer, *Sustain. Energy Fuels*, 2017, 1, 1830–1846.

4 H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P. S. Huang, J. K. Lee, I. S. Cho and X. Zheng, *Energy Environ. Sci.*, 2018, **11**, 1299–1306.

5 J. H. Kim, J. W. Jang, Y. H. Jo, F. F. Abdi, Y. H. Lee, R. Van De Krol and J. S. Lee, Nat. Commun., 2016, 7, 1–9.

6 R. T. Gao, L. Wu, S. Liu, K. Hu, X. Liu, J. Zhang and L. Wang, J. Mater. Chem. A, 2021, 9, 6298–6305.

7 Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo and K. Domen, Adv. Energy Mater., 2016, 6, 2–8.

8 X. Hu, Y. Li, X. Wei, L. Wang, H. She, J. Huang and Q. Wang, Adv. Powder Mater., 2022, 1, 100024.

9 W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu and Z. Zou, *Energy Environ. Sci.*, 2011, 4, 4046–4051.

10 D. G. Wang, Y. Y. Zhang, A. Aldalbahi, L. H. Wang, Q. Li and K. Wang, Nucl. Sci. Tech., 2016, 27, 1–6.

11 K. R. Tolod, T. Saboo, S. Hernández, H. Guzmán, M. Castellino, R. Irani, P. Bogdanoff, F. F. Abdi, E. A. Quadrelli and N. Russo, *Appl. Catal. A Gen.*, 2020, **605**, 117796.

12 R. T. Gao, X. Liu, X. Zhang and L. Wang, *Nano Energy*, 2021, **89**, 106360.

13 Y. Liang and J. Messinger, Phys. Chem. Chem. Phys., 2014, 16, 12014–12020.

14 E. Usman, M. Barzgar Vishlaghi, A. Kahraman, N. Solati and S. Kaya, ACS Appl. Mater. Interfaces, 2021, 13, 60602–60611.

15 H. Chen, J. Li, W. Yang, S. E. Balaghi, C. A. Triana, C. K. Mavrokefalos and G. R. Patzke, ACS Catal., 2021, **11**, 7637–7646.

16 J. Xie, C. Guo, P. Yang, X. Wang, D. Liu and C. M. Li, Nano Energy, 2017, 31, 28–36.

17 Y. Zhang, X. Zhang, D. Wang, F. Wan and Y. Liu, Appl. Surf. Sci., 2017, 403, 389–395.

18 Y. Wang, D. Chen, J. Zhang, M. S. Balogun, P. Wang, Y. Tong and Y. Huang, *Adv. Funct. Mater., 2022, 32, 2112738*

19 M. Beetz, S. Häringer, P. Elsässer, J. Kampmann, L. Sauerland, F. Wolf, M. Günther, A. Fischer and T. Bein, *Adv. Funct. Mater.*, 2021, **31**, 1–8.

20 T. W. Kim and K. S. Choi, J. Phys. Chem. Lett., 2016, 7, 447–451.