Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Rational design carbon electrode of thermoelectrochemical cells for efficient low-grade heat harvest

Xinyan Zhuang^a, Hongrun Jin^a, Boyang Yu^a, Hui Wang^a, Yongxin Luo^a, Kaisi Liu^a, Bin Hu^a, Kefeng Xie^{b,*}, Liang Huang^{a,*}, Jiangjiang Duan^{a,*} and Jun Zhou^a

^a Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.

^b School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, China

*Corresponding authors' e-mail addresses: jiangjduan@hust.edu.cn; huangliang421@hust.edu.cn; xiekefeng@mail.lzjtu.cn

Supplementary Figures

Fig. S1. SEM images of N-CNW@CC with different electrochemical polymerization times.

Fig. S2. The contact angle of original (a) carbon cloth and (b) N-CNW@CC.

Fig. S3. The effects of electrochemical polymerization time. (a)Nyquist impedance plots (10kHz~50mHz), (b) Cyclic voltammograms (100mV s⁻¹) and (c) Electroactive surface area (ESA) calculated by Randles-Sevcik equation for N-CNW@CC with different electrochemical polymerization time.

Fig. S4. (a) Current-voltage curves and their corresponding power densities for samples with different electrochemical polymerization times. (ΔT =50°C). (b) The changing trend of P_{max} with increasing electrochemical polymerization time.

Fig. S5. N_2 sorption isotherm curves of the N-CNW@CC annealed at (a) 700°C, (b) 800°C, (c) 900°C.

Fig. S6. XPS spectra of the N-CNW@CC annealed at (a) 700°C, (b) 800°C, (c) 900°C.

Fig. S7. Raman spectroscopy of electrodes annealed at 700, 800, 900°C.

Fig. S8. N 1s XPS spectra of the N-CNW@CC annealed at (a) 700°C, (b) 800°C, (c) 900°C.

Fig. S9. N1s XPS spectra of single pyrrolic-nitrogen-doped carbon with nitrogen and carbon source mass ratios of (a) 1:7, (b) 1:3 and (c) 1:1.

Fig. S10. Simulation calculation of adsorption energy of $Fe(CN)_6^{3-}$ and $Fe(CN)_6^{4-}$. Adsorption energies of (a) $Fe(CN)_6^{3-}$ and (b) $Fe(CN)_6^{4-}$ on pyrrolic-N, pyridinic-N, graphitic-N.

Fig. S11. Adsorbed structure of $Fe(CN)_6^{3-}$ and $Fe(CN)_6^{4-}$ on (a) graphitic-N, (b) pyridinic-N and (c) pyrrolic-N.

Fig. S12. N 1s XPS spectra of the N-CNW@CC before and after test in 0.4 M $K_3Fe(CN)_6/K_3Fe(CN)_6$ with peaks deconvoluted into pyridinic-N, pyrrolic-N, graphitic-N, and oxidized-N species respectively.

Fig. S13. Current-voltage curves and their corresponding power densities for N-CNW@CC-800 assemble in a modified TEC device with four-layer N-CNW@CC-800 electrodes for enhanced output.

Fig. S14. (a) Current-voltage curves and their corresponding power densities for N-CNW@CC-800 assemble in a modified TEC device with four-layer N-CNW@CC-800 electrodes for enhanced output. (b) Open-circuit voltage (V_{oc}) of the TEC at different values of ΔT . The Seebeck coefficient (S_e) is calculated from the slope of the V_{oc} - ΔT curves.

Fig. S15. (a) Current-voltage and their corresponding power densities curves of TEC assembled by N-CNW@CC-800, which were tested five times. (b) Nyquist impedance plots of N-CNW@CC-800 before and after five times tested.

Fig. S16. SEM images of N-CNW@CP-800.

Fig. S17. Current-voltage and their corresponding power densities curves of TEC assembled by (a) carbon cloth and N-CNW@CC-800 and (b) carbon paper and N-CNW@CP. (ΔT =50°C).

Table S1. Comparison of the thermoelectric property of TECs using N-CNW@CC electrode and optimized thermosensitive crystallization-boosted electrolyte (this work) with other electrolyte and electrode optimization reported in literatures.

Electrode	Electrolyte (ferro/ferricya	ΔT	P _{max}	η_r	Reference
	nide redox couple)	(°C)	(W m ⁻²)	(%)	
N-CNW@CC	optimized	40	17.45	13.02	This work
	thermosensitive				
	crystallization-boosted				
	aqueous electrolyte				
Carbon Paper	thermosensitive	40	14.8	11.1	1
	crystallization-boosted				
	aqueous electrolyte				
Anisotropic holey	eutectic electrolyte	106	3.6	0.7	2
graphene aerogel	consisting of formamide				
	and water				
Graphene-carbon	water	~62	1.05	1.4	3
sphere polylithic					
aerogels					
SWCNTs	water	20	0.09	0.275	4
SWNT-rGO	water	31	0.327	0.64	5
composites					
Activated carbon	water	3.4	0.46	Not	6
textile coated with				mentioned	
carbon nanotubes					
Carbon mutli-	water	86	1.2	0.4	7
walled nanotube					
foam					
carbon nanotube	water	51	6.6	3.95	8
aerogel sheet					

Sample	diffusion coefficients (σ)		
Pure carbon cloth	0.114		
N-CNW@CC (5 min)	0.098		
N-CNW@CC (10 min)	0.095		
N-CNW@CC (20 min)	0.092		
N-CNW@CC (30 min)	0.095		
N-CNW@CC(1 h)	0.094		

Table S2. The ion diffusion coefficients from the EIS.

- 1 B. Yu, J. Duan, H. Cong, W. Xie, R. Liu, X. Zhuang, H. Wang, B. Qi, M. Xu, L. Wang Zhong and J. Zhou, *Science*, 2020, **370**, 342-346.
- 2 G. Li, D. Dong, G. Hong, L. Yan, X. Zhang and W. Song, *Adv. Mater.*, 2019, **31**, 1901403.
- D. Dong, H. Guo, G. Li, L. Yan, X. Zhang and W. Song, *Nano Energy*, 2017, **39**, 470-477.
- 4 T. J. Kang, S. Fang, M. E. Kozlov, C. S. Haines, N. Li, Y. H. Kim, Y. Chen and R. H. Baughman, *Adv. Funct. Mater.*, 2012, **22**, 477-489.
- M. S. Romano, N. Li, D. Antiohos, J. M. Razal, A. Nattestad, S. Beirne, S. Fang, Y. Chen, R. Jalili, G.
 G. Wallace, R. Baughman and J. Chen, *Adv. Mater.*, 2013, 25, 6602-6606.
- 6 H. Im, H. G. Moon, J. S. Lee, I. Y. Chung, T. J. Kang and Y. H. Kim, *Nano Res.*, 2014, **7**, 443-452.
- L. Zhang, T. Kim, N. Li, T. J. Kang, J. Chen, J. M. Pringle, M. Zhang, A. H. Kazim, S. Fang, C. Haines,
 D. Al-Masri, B. A. Cola, J. M. Razal, J. Di, S. Beirne, D. R. Macfarlane, A. Gonzalez-Martin, S.
 Mathew, Y. H. Kim, G. Wallace and R. H. Baughman, *Adv. Mater.*, 2017, 29, 1605652.
- H. Im, T. Kim, H. Song, J. Choi, J. S. Park, R. Ovalle-Robles, H. D. Yang, K. D. Kihm, R. H. Baughman,
 H. H. Lee, T. J. Kang and Y. H. Kim, *Nat. Commun.*, 2016, 7, 10600.