Amino-Functionalized Metal-Organic Framework achieving Efficient Capture-Diffusion-Conversion of CO₂ towards Ultrafast Li-CO₂ Batteries

Hu Hong,^{a, b,} † Jiafeng He, ^b † Yanbo Wang,^a Xun Guo,^a Xiliang Zhao,^b Xiaoke Wang,^b

Chunyi Zhi ^{a,b} Hongfei Li,^{b,c}* Cuiping Han, ^{d,*}

^a Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China

^b Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China

c School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China

^d Faculty of Materials Science and Energy Engineering / Low Dimensional Energy Materials Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

Email: lihf@sslab.org.cn; cp.han@siat.ac.cn

Figure S1. XPS survey spectra of NH₂-Cu-MOFs@RuO₂, RuO₂, and Cu-MOFs.

Figure S2. The high-resolution spectra of N 1s of NH₂-Cu-MOFs@RuO₂, RuO₂, and Cu-MOFs.

Figure S3. The high-resolution spectra of C 1s of NH_2 -Cu-MOFs@RuO₂, RuO₂, and Cu-MOFs.

Figure S4. The high-resolution spectra of O 1s of NH₂-Cu-MOFs@RuO₂, RuO₂, and Cu-MOFs.

Figure S5. FESEM image of NH₂-Cu-MOFs@RuO₂.

Figure S6. (a, b) FESEM images of Cu-MOFs at different magnifications.

Figure S7. (a, b) FESEM image of RuO₂ at different magnifications.

Figure S8. TEM image of the NH₂-Cu-MOFs@RuO₂.

Figure S9. TEM image of RuO₂ inside NH₂-Cu-MOFs@RuO₂.

Figure S10. The simulation snapshots of (a) NH_2 -Cu-MOFs@RuO₂ and (b) Cu-MOFs.

Figure S11. CO_2 sorption isotherms of (a) NH₂-Cu-MOFs@RuO₂ and (b) Cu-MOFs at 253, 273, and 293 K.

Figure S12. N₂ adsorption–desorption isotherms of (a) NH₂-Cu-MOFs@RuO₂ and (b) Cu-MOFs (inset shows corresponding micropore distributions, respectively).

Figure S13. LSV curves of (a) NH_2 -Cu-MOFs@RuO₂, (b) RuO₂, and (c) Cu-MOFs.

Figure S14. Charge-discharge curves of (a) NH₂-Cu-MOFs@RuO₂, (b) RuO₂, and (c) Cu-MOFs.

Figure S15. (a) XRD pattern of Cu-MOFs and NH₂-Cu-MOFs. (b) Charge-discharge curves of Cu-MOFs and NH₂-Cu-MOFs within a limiting capacity of 100 μ A h cm⁻² at a current density of 50 μ A cm⁻².

Figure S16. Comparison of XRD pattern of NH_2 -Cu-MOFs@RuO₂ and Cu-MOFs@RuO₂.

Figure S17. (a, b) FESEM images of Cu-MOFs@RuO₂ at different magnifications. (c) TEM and (d) HRTEM images of Cu-MOFs@RuO₂.

Figure S18. The electrochemical performances of Li–CO₂ batteries with NH₂-Cu-MOFs@RuO₂ and Cu-MOFs@RuO₂ cathodes. (a) Rate performances within a limiting capacity of 100 μ A h cm⁻² at various current densities. (b) Charge-discharge curves within a limiting capacity of 100 μ A h cm⁻² at a current density of 1000 μ A cm⁻². (c) Cycle performance at a current density of 50 μ A cm⁻².

Figure S19. Charge-discharge curves of Cu-MOFs@RuO₂, RuO₂, and Cu-MOFs within a limiting capacity of 100 μ A h cm⁻² at a current density of 50 μ A cm⁻².

Sample	$R_s(\Omega)$	$R_{ct}(\Omega)$
NH ₂ -Cu-MOF@RuO ₂	34.5	70.0
RuO ₂	36.4	107.2
Cu-MOF	762.2	254.7

Table S1. The R_s and R_{ct} values of NH₂-Cu-MOFs@RuO₂, RuO₂, and Cu-MOFs.

Cathode catalast	Current density (mA g ⁻¹)	Cutoff capacity (mAh g ⁻¹)	Recyclability (cycles)	References
NH ₂ -Cu- MOF@RuO ₂	100	200	140	This work
RuO ₂	100	200	111	This work
Cu-MOF	100	200	100	This work
CC@Mo ₂ C NPs	20	100	20	Ref. 1
0.25 M PDS	22	56	30	Ref. 2
CNT@C ₃ N ₄	500	500	100	Ref. 3
MnO@NMCNFs (MOF)	36	452	52	Ref. 4
Gu-NG	200	1000	50	Ref. 5
Ru-Cu-G	400	1000	100	Ref. 6
Ru(II) catalyst	300	1000	60	Ref. 7
Li ₂ MnO ₃	500	1000	30	Ref. 8
Mn(HCOO) ₂ (MOF)	200	1000	50	Ref. 9
Mn ₂ (dobdc) (MOF)	200	1000	50	Ref. 10
MnTPzP-Mn (MOF)	200	1000	90	Ref. 10

Table S2. Performance comparison of different Li-CO₂ batteries reported in the literature.

Reference

1. J. Zhou, X. Li, C. Yang, Y. Li, K. Guo, J. Cheng, D. Yuan, C. Song, J. Lu and B. Wang, Adv. Mater., 2019, 31, 1804439.

2. R. Pipes, A. Bhargav and A. Manthiram, Adv. Energy Mater., 2019, 9, 1900453.

J. Li, K. Zhang, Y. Zhao, C. Wang, L. Wang, L. Wang, M. Liao, L. Ye, Y. Zhang,
Y. Gao, B. Wang and H. Peng, Angew. Chem. Int. Ed., 2022, 61, e202114612.

 S. Li, Y. Liu, X. Gao, J. Wang, J. Zhou, L. Wang and B. Wang, J. Mater. Chem. A, 2020, 8, 10354-10362.

 Z. Zhang, Z. Zhang, P. Liu, Y. Xie, K. Cao and Z. Zhou, J. Mater. Chem. A, 2018, 6, 3218-3223.

 Z. Zhang, C. Yang, S. Wu, A. Wang, L. Zhao, D. Zhai, B. Ren, K. Cao and Z. Zhou, Adv. Energy Mater., 2019, 9, 1802805.

Zhang, Z.; Bai, W.-L.; Cai, Z.-P.; Cheng, J.-H.; Kuang, H.-Y.; Dong, B.-X.; Wang,
Y.-B.; Wang, K.-X.; Chen, J.-S., Enhanced Electrochemical Performance of Aprotic
Li-CO₂ Batteries with a Ruthenium-Complex-Based Mobile Catalyst. *Angew. Chem. Int. Ed.* 2021, 60 (30), 16404-16408.

 Z. Zhuo, K. Dai, R. Qiao, R. Wang, J. Wu, Y. Liu, J. Peng, L. Chen, Y.-d. Chuang,
F. Pan, Z.-x. Shen, G. Liu, H. Li, T. P. Devereaux and W. Yang, Joule, 2021, 5, 975-997.

9. S. Li, Y. Dong, J. Zhou, Y. Liu, J. Wang, X. Gao, Y. Han, P. Qi and B. Wang, Energy & Environmental Science, 2018, 11, 1318-1325.

10. L.-Z. Dong, Y. Zhang, Y.-F. Lu, L. Zhang, X. Huang, J.-H. Wang, J. Liu, S.-L. Li and Y.-Q. Lan, *Chem. Commun.*, 2021, **57**, 8937-8940.