Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Lattice distortion derived catalytic degradation in multi-oxide

cathode catalyst for Li-oxygen batteries

Ruowei Liu^a, Yiming Fu^b, Guoliang Zhang^a, Liang Guo^a, Ruonan Yang^a, Xiuqi Zhang^a, Qing Zhu^{*c} and Feng Dang ^{*a}

^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan, 250061, Shandong Province, P.R.China. E-mail: dangfeng@sdu.edu.cn.

^{b.} School of Life Sciences, Qilu Normal University, Jinan, 250200, Shandong Province, P.R. China. E-mail: 20152789@qlnu.edu.cn

^c Shandong Institute of Innovation and Development, Jinan, 250101, Shandong Province, P.R. China. E-mail: zhuqing0109@163.com.

Chemical reagents: All the chemical required for the synthesis, including Polyvinylpyrrolidone (PVP, Macklin, China), N, N-dimethylformamide solvent (DMF) (99.5%, Sinopharm, China), acetate (99.5%, Aladdin, China), 2-Methylimidazole (MeIM) (98%, Aladdin, China), methanol(99.5%, Sinopharm, China), Cobalt(II) acetate tetrahydrate(Co(NO₃)₂·6H₂O, ammonium metatungstate hydrate((NH₄)₆H₂W₁₂O₄₀·xH₂O, 99.95%, Aladdin, China) and deionized water were used as received without further purification.

Figure S1. Schematic illustration of the preparation procedure of CoWO₄ nanofibers.

Figure S2. SEM images of a) CoWO-4, b) CoWO-5, c) CoWO-6 and d) CoWO-7.

Figure S3. HRTEM images of CoWO-7.

Figure S4. XPS spectra of O 1s.

Figure S5. BET profiles of a) CoWO-4, b) CoWO-5 and c) CoWO-6.

Figure S6. Specific capacity of Li- O_2 batteries with different electrodes at a current density of 200 mA g⁻¹.

Figure S7. Selected discharge/charge curves with voltages of CoWO₄ samples within an upper-limited specific capacity of 600 mAh g⁻¹ at a current density of 1000 mA g⁻¹: a) CoWO-4, b) CoWO-5 and c) CoWO-6.

DFT calculation:

Figure S8. The most stable structure of different adsorbed species on 010Co surface.

Figure S9. The most stable structure of different adsorbed species on 010W surface.

Figure S10. Charge density difference of LiO_2 and Li_2O_2 adsorbates on 010 surfaces from different directions. (a) $010Co + LiO_2$, (b) $010Co + Li_2O_2$, (c) $010W + LiO_2$, and (d) $010W + Li_2O_2$.

Figure S11. Phase diagrams of the cathode reaction on a) 010Co and b) 010W facets.

Surface area [m ² g ⁻¹]	Pore volume [cm ³ g ⁻¹]	Pore size [nm]
23.8414	0.035916	37.8266
13.3943	0.078211	35.0059
8.8363	0.036583	33.4177
6.3868	0.017345	17.5010
	Surface area [m ² g ⁻¹] 23.8414 13.3943 8.8363 6.3868	Surface area [m² g⁻¹]Pore volume [cm³ g⁻¹]23.84140.03591613.39430.0782118.83630.0365836.38680.017345

 Table S1. Result of BET of CoWO₄ samples.

Surface	Surface energy (J m ⁻²)		
001	0.9072		
010	0.4925		
010	1.3533		
100	3.0056		
011	2.1803		
101	2.5211		
110	1.331		
111	2.4914		
020	1.174		
200	3.0049		
-111	3.4629		

 Table S2. Comparison of surface energy of low-Miller-index facets.

010Co	E _{ads} (eV)	$\Delta Q(surface)$	$\Delta Q(adsorbate)$	R(Å)
Li	-0.87528	0.90332	-0.90905	1.49520
O_2	0.03874	-0.00440	0.00440	3.17919
LiO ₂	-3.06703	0.24940	-0.24940	1.81641
Li_2O_2	-2.64276	0.45639	-0.45639	1.63198
Li ₃ O ₄	-2.35432	0.41179	-0.41179	2.16879
Li ₄ O ₄	-3.77246	0.63593	-0.63593	1.91556
010W	E _{ads} (eV)	$\Delta Q(surface)$	$\Delta Q(adsorbate)$	R(Å)
Li	-5.91735	0.91576	-0.91577	0.76442
O_2	-2.03282	-0.00328	0.00327	2.86156
LiO ₂	-3.50619	0.28006	-0.28007	1.26172
Li_2O_2	-5.44270	0.49621	-0.49621	1.48843
Li_3O_4	-5.03443	0.62797	-0.62797	1.42463
T' O	6 60 -	0.00	0.00(00)	1 53300

Table S3. The calculated adsorption energy (E_{ads}) of different adsorbed species on different planes and corresponding Bader charge analysis result (ΔQ) and distance between the adsorbed species and surface of substrates.