## **Supporting Information**

# Anti-Perovskite Carbides Ca<sub>6</sub>CSe<sub>4</sub> and Sr<sub>6</sub>CSe<sub>4</sub> for Photovoltaics with Similar Optoelectronic Properties to MAPbI<sub>3</sub>

Wen-hui Guo,<sup>a</sup> Hong-xia Zhong,<sup>\*b</sup> Juan Du,<sup>a</sup> Yao-hui Zhu,<sup>c</sup> Shi-ming Liu,<sup>a</sup>

Yong He,<sup>a</sup> Chong Tian,<sup>a</sup> Min Zhang,<sup>d</sup> Xinqiang Wang<sup>a</sup> and Jun-jie Shi\*<sup>a</sup>

<sup>a</sup>State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University Yangtze Delta Institute of Optoelectronics, Peking University, Beijing 100871, China.

<sup>b</sup>School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

<sup>c</sup>Physics Department, Beijing Technology and Business University, Beijing 100048, China

<sup>d</sup>Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China

\*Corresponding authors: E-mail: zhonghongxia@cug.edu.cn, jjshi@pku.edu.cn

#### 1. Calculation methods

#### **1.1 DFT calculations**

The highly efficient Vienna Ab-initio Simulation Package (VASP) based on the density functional theory (DFT) is employed in the first-principles calculations of the current anti-perovskite M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) [1]. The electronic exchange-correlation (XC) functional is treated based on the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [2]. The ion-electron interactions are described by the projector augmented wave (PAW) method [3, 4]. The cutoff energy for the plane-wave basis is set to 500 eV. An  $11 \times 11 \times 11 (13 \times 13 \times 13)$  Monkhorst-Pack grid is chosen for structure optimization (self-consistent calculation) in the Brillouin zone of the primitive unit.

#### 1.2. Modified Becke-Johnson (mBJ) potential

Considering that GGA-PBE approach always underestimates the bandgap, in order to obtain the realistic bandgap value, the computationally cheap modified Becke-Johnson

(mBJ) potential [5] was employed. The mBJ potential  $v_{x,\sigma}^{mBJ}$  reads

$$v_{x,\sigma}^{mBJ}(r) = c v_{x,\sigma}^{BR}(r) + (3c-2)\frac{1}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2t_{\sigma}(r)}{\rho_{\sigma}(r)}}$$

where  $\rho_{\sigma}(r)$  is the electron density, which is defined as

$$\rho_{\sigma}(r) = \sum_{i=1}^{N_{\sigma}} |\psi_{i,\sigma}|^2.$$

The kinetic-energy density  $t_{\sigma}(r)$  can be calculated by

$$t_{\sigma}(r) = (1/2) \sum_{i=1}^{N_{\sigma}} \psi_{i,\sigma}^* \nabla \psi_{i,\sigma},$$

here,  $\psi_{i,\sigma}$  is the one-electron wave functions.

The Becke-Roussel (BR) potential  $v_{x,\sigma}^{BR}(r)$  was proposed to model the Coulomb potential created by the exchange hole [6].

$$v_{x,\sigma}^{BR}(r) = -\frac{1}{b_{\sigma}(r)} \Big( 1 - e^{-x_{\sigma}(r)} - \frac{1}{2} x_{\sigma}(r) e^{-x_{\sigma}(r)} \Big),$$

here,  $x_{\sigma}(r)$  is determined from a nonlinear equation involving  $\rho_{\sigma}$ ,  $\nabla \rho_{\sigma}$ ,  $\nabla^2 \rho_{\sigma}$ , and  $t_{\sigma}$ , and then  $b_{\sigma}(r)$  is calculated by

$$b_{\sigma}(r) = \left[ x_{\sigma}^{3}(r)e^{-x_{\sigma}(r)} / (8\pi\rho_{\sigma}(r)) \right]^{1/3},$$
$$c = \alpha + \beta \left( \frac{1}{V_{cell}} \int_{cell} \frac{|\nabla\rho(r')|}{\rho(r')} d^{3}r' \right)^{1/2},$$

here,  $V_{cell}$  is the unit cell volume. The parameters  $\alpha$  and  $\beta$  can be modified to match with the accurate energy gap value.

#### 1.3. Carrier mobility

According to Feynman et al. [7, 8], the carrier mobility  $\mu$  can be obtained using the following formula [9, 10]

$$\mu = \frac{3e}{2\sqrt{\pi}c\omega_{LO}m^*\alpha}\frac{\sinh(\beta/2)}{\beta^{5/2}}\frac{\omega^3}{\nu^3}\frac{1}{\kappa},$$

where e is the electron charge and c is the speed of light in the vacuum.

The effective mass  $m^*$  can be approximately defined by a quadratic relationship of the energy dispersion  $m^* = \hbar^2 [\partial^2 E(k)/\partial k^2]^{-1}$  at the bottom of the conduction band (top of the valence band).  $\omega_{LO}$  is the average LO phonon frequency, which can be obtained by solving the following equation

$$\frac{W^2}{\omega_{LO}} \coth\left(\frac{hc\omega_{LO}}{2k_BT}\right) = \sum_{i=1}^n \frac{W_i^2}{\omega_{LO,i}} \left(\frac{hc\omega_{LO,i}}{2k_BT}\right),$$

here, *h* is the Planck constant,  $k_B$  is the Boltzmann constant, and *T* is the temperature.  $W^2 = \sum_{i=1}^{n} W_i^2$ ,  $W_i$  is the oscillator strength of the *i*-th LO phonon branch, in accordance with Hellwarth and Biaggio,  $W_i$  can be calculated by

$$W_i^2 = \frac{1}{\varepsilon_{\infty}} \left( \omega_{LO,i}^2 - \omega_{TO,i}^2 \right).$$

The parameter  $\alpha = \frac{1}{\varepsilon^*} \sqrt{\frac{R_y}{ch\omega_{LO}}} \sqrt{m^*}$  is the Fröhlich electron-phonon coupling constant,

here,  $R_y$  is the Rydberg energy, and  $\frac{1}{\varepsilon^*}$  is the ionic screening parameter, which can be obtained by  $\frac{1}{\varepsilon^*} = \frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_0}$ . Here,  $\varepsilon_{\infty}$  ( $\varepsilon_0$ ) is the high-frequency (static) dielectric constant. The calculated dielectric functions of Ca<sub>6</sub>CSe<sub>4</sub> and Sr<sub>6</sub>CSe<sub>4</sub> are exhibited in Figure S11.  $\beta$  can be calculated by  $\beta = hc\omega_{LO}/k_BT$ . Both  $\omega$  and  $\nu$  could be found by minimizing the free polaron energy F [11]:

$$F = -(A + B + C),$$

$$A = \frac{3}{\beta} \left[ ln\left(\frac{\nu}{\omega}\right) - \frac{\ln(2\pi\beta)}{2} - ln\left(\frac{\sinh(\nu\beta/2)}{\sinh(\omega\beta/2)}\right) \right],$$

$$B = \frac{\alpha\nu}{\sqrt{\pi}[\exp(\beta) - 1]} \int_{0}^{\beta/2} \frac{\exp(\beta - x) + \exp(x)}{\sqrt{\omega^{2}x(1 - x/\beta) + Y(x)(\nu^{2} - \omega^{2})/\nu}} dx,$$

$$Y(x) = \frac{1}{1 - \exp(-\nu\beta)} \{1 + \exp(-\nu\beta) - \exp(-\nu x) - \exp(\nu[x - \beta])\},$$

$$C = \frac{3(\nu^{2} - \omega^{2})}{4\nu} \left[ coth\left(\frac{\nu\beta}{2}\right) - \frac{2}{\nu\beta} \right].$$

The parameter K is a function of  $\beta$  and the temperature-dependent variational parameters  $\omega$  and  $\nu$  [9, 10, 12] shown in the following formula:

$$K(a,b) = \int_0^\infty \frac{\cos(u)}{[u^2 + a^2 - b\cos(vu)]^{3/2}} du$$
$$a^2 = \left(\frac{\beta}{2}\right)^2 + R\beta \coth\left(\frac{\beta v}{2}\right),$$
$$b = \frac{R\beta}{\sinh(\beta v/2)},$$
$$R = \frac{v^2 - \omega^2}{\omega^2 v}.$$

#### 1.4. Optical absorption

To investigate the optical properties, we calculate the frequency-dependent dielectric matrix in the long-wavelength limit  $(q \rightarrow 0)$  using the sum over states approach [13]. In this case, the imaginary part of the dielectric function can be calculated by

$$\varepsilon_{\alpha\beta}^{(2)}(\omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{q \to 0} \frac{1}{q^2} \sum_{c,\nu,k} 2\omega_k \delta(\varepsilon_{ck} - \varepsilon_{\nu k} - \omega) \times \left\langle u_{ck+\hat{e}_{\alpha}q} \middle| u_{\nu k} \right\rangle \left\langle u_{\nu k+\hat{e}_{\beta}q} \middle| u_{\nu k} \right\rangle^*,$$

where c and v represent the unoccupied and occupied bands, q is the wave number of the incident electromagnetic wave,  $\Omega$  is the volume of the structure cell,  $u_{ck}$  ( $u_{vk}$ )

is the periodic part of the orbitals at the k-point, and  $\hat{e}_{\alpha}$  ( $\hat{e}_{\beta}$ ) represents the unit vector

along the  $\alpha$  ( $\beta$ ) direction.

By using the Kramers-Kronig relationship [14], the real part of the dielectric function can be obtained by the following expression

$$\varepsilon_{\alpha\beta}^{(1)}(\omega) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\varepsilon_{\alpha\beta}^{(2)}(\omega')\omega'}{\omega'^2 - \omega^2 + i\eta} d\omega'.$$

Then the interband optical absorption coefficient  $\alpha(\omega)$  can be calculated by the formula [15]

$$\alpha(\omega) = \sqrt{2}\omega \left[ \sqrt{\varepsilon^{(1)}(\omega)^2 + \varepsilon^{(2)}(\omega)^2} - \varepsilon^{(1)}(\omega) \right]^{1/2}.$$

#### 1.5. Melting point

The melting point  $T_0$  (in K) is estimated by the empirical relation of  $T_0 = 607 + 9.3B$  [16], where B (in GPa) is the bulk modulus. The bulk modulus can be obtained from corresponding elastic constants using Voigt-Reuss-Hill averaging [17-19] by using the VASPKIT code [20].

#### 1.6. Exciton binding energy

The exciton binding energy  $E_b$  can be estimated by the Wannier model [21] of  $E_b = R_y \frac{\mu^*}{\varepsilon_{\infty}^2}$ , where  $R_y=13.56$  eV is the atomic Rydberg energy,  $\mu^*$  is the reduced exciton

mass, which is calculated by  $\frac{1}{\mu^*} = \frac{1}{m_e} + \frac{1}{m_h}$ , and  $\varepsilon_{\infty}$  is the high-frequency dielectric constant.

#### 1.7. Theoretical power conversion efficiency

The power conversion efficiency (PCE)  $\eta$  of a single-junction solar cell is defined as  $\eta = P_{\rm m}/P_{\rm in}$ ,

where  $P_{in}$  is the total incident solar energy density (AM 1.5G), and  $P_m$  is the maximum output power density, which can be obtained by

$$P_{\rm m} = I_{\rm m} V_{\rm m} = I_{\rm SC} V_{\rm OC} FF,$$

where  $I_{\rm m}$  ( $V_{\rm m}$ ) is the maximum current density (voltage),  $I_{\rm SC}$  is the short-circuit current density,  $V_{\rm OC}$  is the open-circuit voltage, and *FF* is the fill factor. The current density-voltage relationship, *i.e. I-V* curve can be obtained by [22, 23]

$$I = I_{\rm sc} - I_0 [\exp(eV/K_{\rm B}T) - 1],$$

here,  $K_{\rm B}$  is the Boltzmann constant, and the short-circuit current density  $I_{\rm sc}$  can be obtained by

$$I_{\rm sc} = e \int_0^\infty a(E) I_{\rm sun}(E) dE.$$

The photon absorptivity a(E) is defined as  $a(E) = 1 - e^{-2\alpha(E)L}$ , where *L* is the thickness of the absorber layer with a zero-reflectivity front surface and unity-reflectivity back surface, and  $\alpha(E)(\alpha(\omega))$  is the optical absorption coefficient calculated by using the first-principles method.  $I_{sun}(E)$  is the AM 1.5G standard photon flux at temperature *T*. The reverse saturation current  $I_0$  is given by

$$I_0 = I_0^r + I_0^{nr} = I_0^r / f_r$$

where  $I_0^r$  and  $I_0^{nr}$  are radiative and nonradiative parts, respectively. The fraction of the radiative electron-hole recombination current  $f_r$  can be described by

$$f_{\rm r} = e^{-\Delta/K_{\rm B}T} = e^{-(E_g^{da} - E_g)/K_{\rm B}T}$$

here,  $E_g^{da}$  is the minimum allowed bandgap and depends on the transition mechanism of solar absorber. As for the anti-perovskite Ca<sub>6</sub>CSe<sub>4</sub> and Sr<sub>6</sub>CSe<sub>4</sub>, they are direct-bandgap compounds with parity-allowed transition between the CBM and VBM, which means  $E_g^{da} = E_g$ , then the parameter  $f_r$  would be 1. Therefore, the reverse saturation current  $I_0$  can be calculated by

$$I_0 = I_0^r = e \int_0^\infty a(E) I_{\rm bb}(E,T) dE,$$

here,  $I_{bb}(E,T)$  is black-body spectrum at temperature T.

#### **1.8.** Concentrator solar cells

In concentrator photovoltaic systems, the concentration ratio X of the solar radiation incident onto the cell represents how many times the solar light is focused and is commonly referred to as 'suns' [24].

At 1sun, the PCE  $\eta^{1sun}$  can be defines as

$$\eta^{1sun} = \frac{I_{\text{SC}}^{1sun} V_{\text{OC}}^{1sun} FF^{1sun}}{P_{in}^{1sun}},$$

here,  $P_{in}^{1sun}$  is the total incident solar energy density (AM 1.5D standard photon flux).  $V_{OC}^{1sun}$ ,  $I_{SC}^{1sun}$ , and  $FF^{1sun}$  indicate the short-circuit current density, open-circuit voltage, and fill factor, respectively, and could be gained using the above-mentioned approach.

At X suns, the short-circuit current density can be obtained by  $I_{SC}^{Xsuns} = XI_{SC}^{1sun}$ . The open-circuit voltage is received by

$$V_{\rm OC}^{Xsuns} = V_{\rm OC}^{1sun} + \frac{k_{\rm B}T}{e} \ln X,$$

then the fill factor could be calculated from the corresponding open-circuit voltage  $V_{\rm OC}^{Xsuns}$  by using the following formula

$$FF^{Xsuns} = \frac{V_{\text{OC}}^{Xsuns} - \frac{k_{\text{B}}T}{e} \ln[eV_{\text{OC}}^{Xsuns}/k_{\text{B}}T + 0.72]}{V_{\text{OC}}^{Xsuns} + \frac{k_{\text{B}}T}{e}}.$$

Given the short-circuit current density, open-circuit voltage, and fill factor, the PCE at X suns can be gained as

$$\eta^{Xsuns} = \frac{I_{\text{SC}}^{Xsuns} V_{\text{OC}}^{Xsuns} FF^{Xsuns}}{P_{in}^{Xsuns}} = \eta^{1sun} \left(\frac{FF^{Xsuns}}{FF^{1sun}}\right) \left(1 + \frac{\frac{k_{\text{B}}T}{e} \ln X}{V_{\text{OC}}^{1sun}}\right),$$

here, the total incident solar energy density  $P_{in}^{Xsuns}$  is calculated by  $P_{in}^{Xsuns} = X P_{in}^{1sun}$ 

## 2. Crystal structure and stability



Figure S1 Relaxed rhombohedral lattice of  $M_6CCh_4$  (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites.



**Figure S2** Lattice constants of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) antiperovskites.



**Figure S3** X-ray diffraction (XRD) spectra of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites, in which the angular range and the radiation wavelength are chosen to be  $10^{\circ}$ - $60^{\circ}$  and  $\lambda$ =1.54184 (Cu-K<sub>a</sub>), respectively.

**Table S1** Several possible and stable decomposition compounds of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites are listed. Their structural formula and identification number (ID) are collected from the Materials Project [20].

| Formula          | ID         | Formula | ID         | Formula | ID      | Formula          | ID         |
|------------------|------------|---------|------------|---------|---------|------------------|------------|
| Са               | mp-132     | Sr      | mp-1187073 | Ba      | mp-122  | С                | mp-569304  |
| S                | mp-96      | Se      | mp-570481  | Те      | mp-19   | SrC <sub>6</sub> | mp-1208630 |
| BaC <sub>6</sub> | mp-1214417 | CaS     | mp-1672    | CaSe    | mp-1415 | CaTe             | mp-1519    |
| SrS              | mp-1987    | SrS₃    | mp-1175    | SrSe    | mp-2758 | SrTe             | mp-1958    |
| BaS              | mp-1500    | BaS₂    | mp-684     | $BaS_3$ | mp-239  | BaSe             | mp-1253    |
| BaSe₂            | mp-7547    | BaTe    | mp-1000    |         |         |                  |            |

**Table S2** Estimated melting point  $T_0$  [16], decomposition paths and corresponding decomposition energy of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites. The decomposition energy is obtained by the difference between the total energy of all decomposition compounds and that of M<sub>6</sub>CCh<sub>4</sub>. The positive decomposition energy indicates that M<sub>6</sub>CCh<sub>4</sub> is stable due to the prohibited decomposition path.

| Compound                         | <i>Т</i> <sub>0</sub> (К) | Decomposition path                                                                                               | Decomposition<br>energy<br>(eV/atom) |
|----------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Ca <sub>6</sub> CS <sub>4</sub>  | 1026                      | $Ca_6CS_4 \xrightarrow{T \ge T_0} 4CaS+2Ca+C$                                                                    | -0.20                                |
| Ca <sub>6</sub> CSe <sub>4</sub> | 988                       | $Ca_6CSe_4 \xrightarrow{T \ge T_0} 4CaSe+2Ca+C$                                                                  | -0.14                                |
| Ca <sub>6</sub> CTe <sub>4</sub> | 923                       | $Ca_6CTe_4 \xrightarrow{T \ge T_0} 4CaTe+2Ca+C$                                                                  | -0.07                                |
|                                  |                           | $Sr_6CS_4 \xrightarrow{T \ge T_0} 4SrS+2Sr+C$                                                                    | -0.27                                |
| 0.00                             | 054                       | $\mathbf{3Sr}_{6}\mathbf{CS}_{4} \rightarrow \mathbf{4SrS}_{3}\mathbf{+}\mathbf{14Sr+3C}$                        | 0.80                                 |
| $Sr_6CS_4$                       | 951                       | $6Sr_6CS_4 \xrightarrow{T \ge T_0} 24SrS+SrC_6+11Sr$                                                             | -0.27                                |
|                                  |                           | $\mathbf{6Sr}_{6}\mathbf{CS}_{4} \rightarrow \mathbf{8SrS}_{3}\mathbf{+}\mathbf{SrC}_{6}\mathbf{+}\mathbf{27Sr}$ | 0.79                                 |
|                                  |                           | $Sr_6CSe_4 \xrightarrow{T \ge T_0} 4SrSe+2Sr+C$                                                                  | -0.21                                |
| $Sr_6CSe_4$                      | 923                       | $6Sr_6CSe_4 \xrightarrow{T \ge T_0} 24SrSe+SrC_6+11Sr$                                                           | -0.21                                |
| Sr₅CTe₄                          | 877                       | $Sr_6CTe_4 \xrightarrow{T \ge T_0} 4SrTe+2Sr+C$                                                                  | -0.14                                |
| 0.60.04                          |                           | $6Sr_6CTe_4 \xrightarrow{T \ge T_0} 24SrTe+SrC_6+11Sr$                                                           | -0.15                                |
|                                  | 905                       | $Ba_6CS_4 \xrightarrow{T \ge T_0} 4BaS+2Ba+C$                                                                    | -0.24                                |
|                                  |                           | $Ba_6CS_4 \rightarrow 2BaS_2 + 4Ba + C$                                                                          | 0.50                                 |
| D- 00                            |                           | $3Ba_6CS_4 \rightarrow 4BaS_3$ +14Ba+3C                                                                          | 0.76                                 |
| $Ba_6CS_4$                       |                           | 6Ba₅CS₄                                                                                                          | -0.25                                |
|                                  |                           | $\mathbf{6Ba}_{6}\mathbf{CS}_{4} \rightarrow \mathbf{12BaS}_{2}\mathbf{+BaC}_{6}\mathbf{+23Ba}$                  | 0.49                                 |
|                                  |                           | $6\text{Ba}_6\text{CS}_4 \rightarrow 8\text{BaS}_3\text{+}\text{BaC}_6\text{+}27\text{Ba}$                       | 0.75                                 |
|                                  |                           | Ba₀CSe₄                                                                                                          | -0.20                                |
|                                  |                           | $Ba_6CSe_4 \rightarrow 2BaSe_2+4Ba+C$                                                                            | 0.53                                 |
| $Ba_6CSe_4$                      | 867                       | $6Ba_6CSe_4 \xrightarrow{T \ge T_0} 24BaSe+BaC_6+11Ba$                                                           | -0.21                                |
|                                  |                           | $\mathbf{6Ba}_{6}\mathbf{CSe}_{4} \rightarrow \mathbf{12BaSe}_{2}\mathbf{+BaC}_{6}\mathbf{+23Ba}$                | 0.52                                 |
|                                  | 000                       | $Ba_6CTe_4 \xrightarrow{T \ge T_0} 4BaTe + 2Ba + C$                                                              | -0.15                                |
|                                  | 830                       | $6Ba_6CTe4 \xrightarrow{T \ge T_0} 24BaTe+BaC_6+11Ba$                                                            | -0.16                                |



**Figure S4** Phonon spectra of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites at room temperature.



**Figure S5** Fluctuation of the total energy of  $M_6CCh_4$  (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites during the Ab initio molecular dynamics (AIMD) simulation at 300 K within 3000 fs. The inset is the crystal structures before (the left) and after (the right) AIMD.

## **3.** Electronic properties



Figure S6 PBE band structures of  $M_6CCh_4$  (M=Ca, Sr, Ba; Ch=S, Se, Te) antiperovskites, in which the energy gaps are revised by the mBJ potential.



**Figure S7** PBE band structures of  $M_6CCh_4$  (M=Ca, Sr, Ba; Ch=S, Se, Te) antiperovskites without (w/o) (blue solid lines) and with (red dashed lines) spin-orbit coupling (SOC) effect into consideration.

| Compound                        | Species | Charge | Compound             | Species | Charge | Compound             | Species | Charge |
|---------------------------------|---------|--------|----------------------|---------|--------|----------------------|---------|--------|
| Ca <sub>6</sub> CS₄             | Са      | 1.372  | Ca₅CSe₄              | Са      | 1.362  | Ca <sub>6</sub> CTe₄ | Са      | 1.351  |
|                                 | С       | -2.118 |                      | С       | -2.158 |                      | С       | -2.196 |
|                                 | S       | -1.528 |                      | Se      | -1.504 |                      | Te      | -1.477 |
| Sr <sub>6</sub> CS <sub>4</sub> | Sr      | 1.364  | Sr <sub>6</sub> CSe₄ | Sr      | 1.354  | Sr <sub>6</sub> CTe₄ | Sr      | 1.343  |
|                                 | С       | -2.081 |                      | С       | -2.113 |                      | С       | -2.143 |
|                                 | S       | -1.526 |                      | Se      | -1.503 |                      | Те      | -1.479 |
| Ba <sub>6</sub> CS₄             | Ва      | 1.282  |                      | Ва      | 1.267  |                      | Ва      | 1.253  |
|                                 | С       | -1.859 | Ba <sub>6</sub> CSe₄ | С       | -1.882 | Ba₀CTe₄              | С       | -1.911 |
|                                 | S       | -1.458 |                      | Se      | -1.429 |                      | Те      | -1.403 |

**Table S3** Bader net charges in  $M_6CCh_4$  (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites. The positive (negative) charge value indicates that the corresponding atom loses (gains) electrons.



Figure S8 Electron localization function in Ca<sub>6</sub>CSe<sub>4</sub> anti-perovskite.



Figure S9 Variation of Bader net charges in M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites.

**Table S4** Quantitative data corresponding to partial charge densities at VBM, CBM, and CB2 ( $\Gamma$ -point) in Ca<sub>6</sub>CSe<sub>4</sub> anti-perovskite. The element site is labeled in Figure S10 (b).

| Energy | Element | Element aite     | Orbital distribution ratio (%) |    |    |       |  |  |
|--------|---------|------------------|--------------------------------|----|----|-------|--|--|
| level  | type    | Element site     | S                              | р  | d  | Total |  |  |
|        | Ca      | Ca1-Ca12         | 0                              | 1  | 3  | 4     |  |  |
| VBM    | С       | C1/C2            | 0                              | 18 | -  | 18    |  |  |
|        | 50      | Se1/Se2          | 0                              | 6  | 0  | 6     |  |  |
|        | Se      | Se3-Se8          | 0                              | 1  | 0  | 1     |  |  |
| СВМ    | Ca      | Ca1-Ca12         | 4                              | 1  | 1  | 6     |  |  |
|        | С       | C1/C2            | 1                              | 0  | -  | 1     |  |  |
|        | Se      | Se1/Se2          | 3                              | 0  | 0  | 3     |  |  |
|        |         | Se3-Se8          | 4                              | 0  | 0  | 4     |  |  |
|        |         | Ca1/Ca5/Ca7/Ca12 | 0                              | 0  | 6  | 6     |  |  |
|        | Ca      | Ca2/Ca4/Ca8/Ca10 | 0                              | 0  | 8  | 8     |  |  |
|        |         | Ca3/Ca9          | 0                              | 0  | 9  | 9     |  |  |
| CB2    |         | Ca6/Ca11         | 0                              | 0  | 10 | 10    |  |  |
|        | С       | C1/C2            | 0                              | 0  | -  | 0     |  |  |
|        | 50      | Se1/Se2/Se5/Se8  | 0                              | 0  | 0  | 0     |  |  |
|        | Se      | Se3/Se4/Se6/Se7  | 0                              | 0  | 1  | 1     |  |  |



**Figure S10** (a) Band structure of Ca<sub>6</sub>CSe<sub>4</sub> anti-perovskite, in which the energy positions indicating VBM, CBM, and CB2 are labeled. The energy difference between the CBM and CB2 is 0.6 eV approximately. (b) The crystal structure of Ca<sub>6</sub>CSe<sub>4</sub>, in which the element sites are marked. The isosurface plot of real space charge distribution at (c) VBM, (d) CBM, and (e) CB2 ( $\Gamma$ -point) in Ca<sub>6</sub>CSe<sub>4</sub>. The isosurface value is 0.0015 e Å<sup>-3</sup>.

## 4. Transport properties

**Table S5** Carrier effective mass  $m^*$ , ionic screening parameter  $1/\varepsilon^*$ , electron-phonon coupling constant  $\alpha$ , and carrier mobility  $\mu$  of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites along  $\Gamma$ -M,  $\Gamma$ -K, and  $\Gamma$ -A paths, in which *e* and *h* indicate electron and hole, respectively.

|                                  |      |                | Carrier            |      |                                            |                  |      |                                            |  |
|----------------------------------|------|----------------|--------------------|------|--------------------------------------------|------------------|------|--------------------------------------------|--|
| Compound                         | 1/ε* | <i>k</i> -path |                    | е    |                                            |                  | h    |                                            |  |
|                                  |      | •              | $m^*$<br>( $m_0$ ) | α    | μ<br>(cm²V <sup>-1</sup> s <sup>-1</sup> ) | $m^*$<br>$(m_0)$ | α    | μ<br>(cm²V <sup>-1</sup> s <sup>-1</sup> ) |  |
| MAPbl <sub>3</sub>               | 0.17 | -              | 0.104              | 1.72 | 197                                        | 0.104            | 1.72 | 197                                        |  |
|                                  |      | Г-М            | 0.28               | 0.88 | 127                                        | 1.95             | 2.33 | 5                                          |  |
| Ca <sub>6</sub> CS <sub>4</sub>  | 0.09 | Г-К            | 0.29               | 0.90 | 121                                        | 1.97             | 2.34 | 5                                          |  |
|                                  |      | Г-А            | 0.31               | 0.93 | 109                                        | 0.24             | 0.82 | 163                                        |  |
|                                  |      | Г-М            | 0.21               | 0.74 | 210                                        | 1.63             | 2.07 | 8                                          |  |
| Ca <sub>6</sub> CSe <sub>4</sub> | 0.07 | Γ-K            | 0.22               | 0.76 | 195                                        | 1.67             | 2.09 | 7                                          |  |
|                                  |      | Г-А            | 0.21               | 0.74 | 210                                        | 0.20             | 0.72 | 226                                        |  |
|                                  |      | Г-М            | 0.24               | 0.70 | 201                                        | 1.30             | 1.64 | 14                                         |  |
| Ca <sub>6</sub> CTe <sub>4</sub> | 0.06 | Γ-K            | 0.24               | 0.70 | 201                                        | 1.34             | 1.66 | 13                                         |  |
|                                  |      | Г-А            | 0.19               | 0.63 | 289                                        | 0.20             | 0.64 | 264                                        |  |
|                                  |      | Г-М            | 0.23               | 0.85 | 162                                        | 1.73             | 2.34 | 6                                          |  |
| Sr <sub>6</sub> CS <sub>4</sub>  | 0.08 | Γ-K            | 0.24               | 0.87 | 150                                        | 1.78             | 2.37 | 6                                          |  |
|                                  |      | Г-А            | 0.23               | 0.85 | 162                                        | 0.23             | 0.85 | 162                                        |  |
|                                  |      | Г-М            | 0.18               | 0.74 | 255                                        | 1.55             | 2.17 | 8                                          |  |
| Sr <sub>6</sub> CSe <sub>4</sub> | 0.07 | Γ-K            | 0.19               | 0.76 | 232                                        | 1.58             | 2.20 | 8                                          |  |
|                                  |      | Γ-A            | 0.16               | 0.70 | 306                                        | 0.17             | 0.72 | 279                                        |  |
|                                  |      | Г-М            | 0.20               | 0.76 | 238                                        | 1.29             | 1.92 | 12                                         |  |
| Sr <sub>6</sub> CTe₄             | 0.06 | Γ-K            | 0.21               | 0.78 | 220                                        | 1.29             | 1.92 | 12                                         |  |
|                                  |      | Γ-A            | 0.18               | 0.72 | 279                                        | 1.29             | 1.92 | 12                                         |  |
|                                  |      | Г-М            | 0.70               | 1.58 | 26                                         | 1.13             | 2.01 | 12                                         |  |
| Ba <sub>6</sub> CS₄              | 0.08 | Γ-K            | 0.83               | 1.73 | 19                                         | 1.17             | 2.05 | 11                                         |  |
|                                  |      | Г-А            | 0.86               | 1.76 | 18                                         | 0.36             | 1.14 | 76                                         |  |
|                                  |      | Г-М            | 0.24               | 0.98 | 148                                        | 1.13             | 2.14 | 12                                         |  |
| Ba <sub>6</sub> CSe <sub>4</sub> | 0.07 | Γ-K            | 0.27               | 1.04 | 122                                        | 1.16             | 2.16 | 11                                         |  |
|                                  |      | Γ-A            | 0.24               | 0.98 | 148                                        | 0.28             | 1.06 | 116                                        |  |
|                                  |      | Г-М            | 0.45               | 1.30 | 61                                         | 0.98             | 1.92 | 17                                         |  |
| Ba <sub>6</sub> CTe <sub>4</sub> | 0.07 | Γ-K            | 0.50               | 1.37 | 51                                         | 0.99             | 1.93 | 17                                         |  |
| 0 4                              |      | Г-А            | 0.86               | 1.80 | 21                                         | 0.25             | 0.97 | 154                                        |  |

| Compound                         | ε <sub>elec</sub> | $\epsilon_{ion}$ | ε <sub>0</sub> |
|----------------------------------|-------------------|------------------|----------------|
| MAPbl <sub>3</sub>               | 5.0               | 28.5             | 33.50          |
| Ca <sub>6</sub> CS <sub>4</sub>  | 7.43              | 12.7             | 20.13          |
| Ca <sub>6</sub> CSe <sub>4</sub> | 7.90              | 11               | 18.90          |
| Ca <sub>6</sub> CTe <sub>4</sub> | 8.48              | 8.8              | 17.28          |
| Sr <sub>6</sub> CS₄              | 7.76              | 14.59            | 22.35          |
| Sr <sub>6</sub> CSe <sub>4</sub> | 8.26              | 11.91            | 20.17          |
| Sr <sub>6</sub> CTe <sub>4</sub> | 8.35              | 9.15             | 17.50          |
| Ba <sub>6</sub> CS <sub>4</sub>  | 8.64              | 21.12            | 29.76          |
| Ba <sub>6</sub> CSe <sub>4</sub> | 8.86              | 16.71            | 25.57          |
| Ba <sub>6</sub> CTe₄             | 9.04              | 12.94            | 21.98          |

**Table S6** Electronic (high-frequency)  $\varepsilon_{elec}$ , ionic  $\varepsilon_{ion}$ , and static  $\varepsilon_{o}$  dielectric constants of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites.



**Figure S11** Dielectric properties of (a, c) Ca<sub>6</sub>CSe<sub>4</sub> and (b, d) Sr<sub>6</sub>CSe<sub>4</sub> anti-perovskites. The calculated (a, b) electronic and (c, d) ionic contributions to the real and imaginary part of the dielectric function. The static dielectric constant  $\varepsilon_0$  is calculated by  $\varepsilon_0 = \varepsilon_{elec} + \varepsilon_{ion}$ .

## 5. Optical properties



**Figure S12** Optical absorption coefficient of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) anti-perovskites and those of photovoltaic compounds including Si, GaAs, and MAPbI<sub>3</sub>. The inset is the AM 1.5G spectrum. The dash area indicates the visible-light region.

**Table S7** Exciton binding energy  $E_b$  of M<sub>6</sub>CCh<sub>4</sub> (M=Ca, Sr, Ba; Ch=S, Se, Te) antiperovskites. The reduced exciton mass  $\mu^*$  and high-frequency dielectric constant  $\varepsilon_{\infty}$  are also listed.

| Compound                         | ε <sub>∞</sub> | $\mu^*$<br>( $m_0$ ) | $E_b$ (meV) |
|----------------------------------|----------------|----------------------|-------------|
| Ca <sub>6</sub> CS <sub>4</sub>  | 7.43           | 0.24                 | 59          |
| Ca <sub>6</sub> CSe <sub>4</sub> | 7.90           | 0.18                 | 39          |
| Ca₀CTe₄                          | 8.48           | 0.18                 | 34          |
| Sr <sub>6</sub> CS <sub>4</sub>  | 7.76           | 0.20                 | 44          |
| Sr <sub>6</sub> CSe <sub>4</sub> | 8.26           | 0.15                 | 30          |
| Sr <sub>6</sub> CTe <sub>4</sub> | 8.35           | 0.16                 | 31          |
| Ba₀CS₄                           | 8.64           | 0.42                 | 76          |
| Ba₀CSe₄                          | 8.86           | 0.19                 | 34          |
| Ba <sub>6</sub> CTe <sub>4</sub> | 9.04           | 0.33                 | 55          |

### 6. Theoretical power conversion efficiency



**Figure S13** *I-V* and *P-V* curves of the 3  $\mu$ m-thick Sr<sub>6</sub>CSe<sub>4</sub> anti-perovskite, and the corresponding parameters, such as the short-circuit current density *I*<sub>SC</sub>, open-circuit voltage *V*<sub>OC</sub>, maximum current density (voltage) *I*<sub>m</sub> (*V*<sub>m</sub>), and fill factor *FF* are also given.

**Table S8** Calculated maximum current density  $I_m$  (voltage  $V_m$ ), short-circuit current density  $I_{SC}$ , open-circuit voltage  $V_{OC}$ , maximum output power density  $P_m$ , fill factor FF, and PCE of Ca<sub>6</sub>CSe<sub>4</sub> and Sr<sub>6</sub>CSe<sub>4</sub> anti-perovskites.

| Compound                         | Thickness<br>(µm) | I <sub>m</sub><br>(mA/cm²) | V <sub>m</sub><br>(V) | I <sub>sc</sub><br>(mA/cm²) | V <sub>oc</sub><br>(V) | P <sub>m</sub><br>(mW/cm²) | FF<br>(%) | PCE<br>(%) |
|----------------------------------|-------------------|----------------------------|-----------------------|-----------------------------|------------------------|----------------------------|-----------|------------|
| Ca <sub>6</sub> CSe <sub>4</sub> | 3                 | 27.55                      | 1.12                  | 28.19                       | 1.22                   | 30.83                      | 89        | 30.83      |
| Sr <sub>6</sub> CSe <sub>4</sub> | 3                 | 28.13                      | 1.10                  | 28.79                       | 1.20                   | 30.81                      | 90        | 30.81      |



**Figure S14** Several vital parameters including the short-circuit current density  $I_{SC}$ , open-circuit voltage  $V_{OC}$ , PCE, and fill factor *FF* versus the concentration ratio X in 3 µm-thick Ca<sub>6</sub>CSe<sub>4</sub> and Sr<sub>6</sub>CSe<sub>4</sub> anti-perovskites. The red and blue dashed lines indicate the PCE values of the 3 µm-thick Ca<sub>6</sub>CSe<sub>4</sub> and Sr<sub>6</sub>CSe<sub>4</sub> and Sr<sub></sub>

#### References

- [1] G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, 47, 558-561.
- [2] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- [3] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- [4] G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- [5] F. Tran and P. Blaha, *Phys. Rev. Lett.*, 2009, 102, 226401.
- [6] A. D. Becke and M. R. Roussel, Phys. Rev. A, 1989, 39, 3761–3767.
- [7] R. P. Feynman, Phys. Rev., 1955, 97, 660-665.
- [8] R. P. Feynman, R. W. Hellwarth, C. K. Iddings and P. M. Platzman, *Phys. Rev.*, 1962, 127, 1004-1017.
- [9] M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik and H. J. Snaith, A. Pucci and R. Lovrinčić, *Mater. Horiz.*, 2016, 3, 613-620.
- [10] I. Biaggio, R. W. Hellwarth and J. P. Partanen, Phys. Rev. Lett., 1997, 78, 891-894.
- [11]R. W. Hellwarth and I. Biaggio, Phys. Rev. B, 1999, 60, 299-307.
- [12] J. M. Frost, Phys. Rev. B, 2017, 96, 195202.
- [13] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller and F. Bechstedt, *Phys. Rev. B*, 2006, 73, 045112.
- [14] A. Moscowitz, Adv. Chem. Phys., 1962, 4, 67-112.
- [15] S. Saha, T. P. Sinha and A. Mookerjee, Phys. Rev. B, 2000, 62, 8828-8834.
- [16]I. Johnston, G. Keeler, R. Rollins and S. Spicklemire, Solid State Physics Simulations. The Consortium for Upper Level Physics Software, Wiley, New York, 1996.
- [17] W. Voigt, Ann. Phys., 1889, 38, 573.
- [18] A. Reuss and Z. Angew. Math. Mech., 1929, 9, 49.
- [19] R. Hill, Proc. Phys. Soc. A, 1952, 65, 349.
- [20] V. Wang, N. Xu, J. C. Liu, G. Tang and W. T. Geng, Computer Physics Communications, 2021, 267, 108033.
- [21]X.-G. Zhao, J.-H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H. Wei and L. Zhang, J. Am. Chem. Soc., 2017, 139, 2630–2638.
- [22]L. Yu and A. Zunger, Phys. Rev. Lett., 2012, 108, 068701.
- [23] L. Yu, R. S. Kokenyesi, D. A. Keszler and A. Zunger, *Adv. Energy Mater.*, 2013, 3, 43-48.
- [24] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, 2011.