Supporting Information to

Modulating between 2e⁻ and 4e⁻ pathway in the oxygen reduction reaction with laser-synthesized iron oxide-grafted nitrogen-doped carbon

Huize Wang, Maria Jerigova, Jing Hou, Nadezda V. Tarakina, Simon Delacroix, Nieves Lopez-Salas, Volker Strauss

Chemical composition	
Electrical properties	
Pre-Carbonization	
X-ray photoelectron spectroscopy	
STEM and EDX analysis	
Oxygen reduction reaction performance	
Comparison with published studies	
References	

Chemical composition

sample	Ν	С	Н	Fe
CNFA (CA/U300)	13	68	1	-
pre-NC(Fe)_1(2.3)	21	48	3	2.3
pre-NC(Fe)_1(2.7)	19	42	3	2.7
pre-NC(Fe)_1(8.6)	21	42	3	8.6
LP-NC(Fe)_1(3.0)	10	72	1	3.0
LP-NC(Fe) 1(4.6)	7	72	1	4.6
LP-NC(Fe)_1(12.1)	6	60	1	12.1
LP-NC(Fe) 2(3.3)	13	60	2	3.3
LP-NC(Fe) 2(3.8)	11	67	2	3.8
LP-NC(Fe) 2(14.5)	8	60	1	14.5

Table S1. Elemental mass percentage of $pre-NC(Fe)_1(x)$ and $LP-NC(Fe)_n(x)$ obtained from combustion elemental analysis (N,C,H) and ICP-MS (Fe).*

* The remaining mass is due oxygen.

Figure S1. EDX mapping of LP_NC(Fe)_1(3.0), LP_NC(Fe)_1(4.6) and LP_NC(Fe)_1(12.1).

Electrical properties

Figure S2. Electrical conductivity of films $LP-NC(Fe)_1(x)$ and $LP-NC(Fe)_2(x)$ obtained by averaging 30 sample films.

Pre-Carbonization

Figure S3. X-ray powder diffraction patterns of the primary films to route 1 (*pre-NC(Fe)_1(y)*), pre-carbonized at 300 °C.

Figure S4. (a) *STEM-ADF* images of *pre_NC(Fe)_1(3.0)*; (b) corresponding EDX elemental mappings and spectrum from (a).

X-ray photoelectron spectroscopy

Figure S5. XPS spectra of **LP_NC** (reference) and the **CNFA** (CA/U(300)) with emphasis on the O_{1s} (left), N_{1s} (middle), and C_{1s} regions (right).

Figure S6. XPS spectra of the samples prepared by route 1: $LP_NC(Fe)_1(3.0)$, $LP_NC(Fe)_1(4.6)$ and $LP_NC(Fe)_1(12.1)$ with emphasis on the F_{2p} , O_{1s} , N_{1s} , and C_{1s} (from left to right) regions.

Figure S7. XPS spectra of the primary films of route 1: $pre_NC(Fe)_1(3.0)$, $pre_NC(Fe)_1(4.6)$ and $pre_NC(Fe)_1(12.1)$ with emphasis on the F_{2p} , O_{1s} , N_{1s} , and C_{1s} (from left to right) regions.

Figure S8. XPS spectra of the samples prepared by route 2: $LP_NC(Fe)_2(3.3)$, $LP_NC(Fe)_2(3.8)$ and $LP_NC(Fe)_2(14.5)$ with emphasis on the F_{2p} , O_{1s} , N_{1s} , and C_{1s} (from left to right) regions.

Figure S9. XPS spectra of the primary films of route 2: $pre_NC(Fe)_2(3.3)$, $pre_NC(Fe)_2(3.8)$ and $pre_NC(Fe)_2(14.5)$ with emphasis on the F_{2p} , O_{1s} , N_{1s} , and C_{1s} (from left to right) regions.

Sample	Ν	С	0	Fe
LP-NC	5.05	77.54	17.41	-
pre-NC(Fe)_1(2.3)	13.63	69.21	17.08	0.09
pre-NC(Fe)_1(2.7)	12.06	71.03	16.78	0.13
pre-NC(Fe)_1(8.6)	12.92	70.63	16.10	0.35
LP-NC(Fe)_1(3.0)	9.77	77.24	12.82	0.74
$LP-NC(Fe)_1(4.6)$	4.11	75.42	15.53	0.96
LP-NC(Fe)_1(12.1)	6.33	74.58	18.96	0.56
LP-NC(Fe)_2(3.3)	7.05	72.43	14.74	5.78
$LP-NC(Fe)_{2(3.8)}$	5.25	73.02	16.48	5.25
$LP-NC(Fe)_{2(14.5)}$	3.02	61.29	23.92	11.77

Table S2. Elemental mass percentage of pre- $NC(Fe)_1(x)$ and LP- $NC(Fe)_n(x)$ obtained from XPS survey spectra quantification

Table S3. Composition of nitrogen of laser-carbon obtained by deconvolution of the N_{1s} peaks of the XPS spectra

Sample	N _{1s} peaks (% of total peak area)				H ₂ O ₂ production
	Pyridinic N	Pyrrolic N	Graphitic N	NO ₃ -	-
LP-NC	18.36	75.34	6.29	-	60
LP-NC(Fe)_1(3.0)	26.21	65.98	7.80	-	40
$LP-NC(Fe)_1(4.6)$	20.71	71.61	7.68	-	
LP-NC(Fe)_1(12.1)	90.83	8.44	0.73	-	2
LP-NC(Fe)_2(3.3)	25.37	67.50	6.93	-	80
$LP-NC(Fe)_2(3.8)$	21.22	68.09	10.70	-	
LP-NC(Fe)_2(14.5)	42.01	50.49	2.12	5.37	8

STEM and EDX analysis

Figure S10. EDX spectrum on overview (grey filling) and particle (red line) regions of LP_NC(Fe)_1(3.0) (bottom) and LP_NC(Fe)_2(3.3) (top).

Figure S11. (a) *STEM image of thin film, clusters, and dense substrate (from left to right) from LP_NC(Fe)_2(3.3);* (b) *EDX of dense carbon substrate grafted with iron clusters; (c) EDX with solid flake containing iron and oxide.*

Oxygen reduction reaction performance

Figure S12. Calculated number of transferred electrons and H_2O_2 production efficiency of LP-C(Fe)_2(3.8) in KOH 0.1M. H_2O_2 production (%) in dashed lines.

Figure S13. ORR performance in oxygen saturated 0.5M phosphate buffer (pH 7.2) evaluated using an RRDE setup. (a) and (b) Linear sweep voltammetry of LP-C(Fe)_1(3.0) and LP-C(Fe)_2(3.3), (c) and (d) Calculated number of transferred electrons and H_2O_2 production efficiency of LP-C(Fe)_1(3.0) and LP-C(Fe)_2(3.3). H_2O_2 ring current and selectivity (%) in dashed lines

Comparison with published studies

Sample	Fe type	Onset potential (V vs. RHE)	Mechanism	max. H ₂ O ₂ prod	Ref.
CA/U300	-	0.73	2 e-	60	this work
LP-C(Fe) 2(3.3)	α -Fe ₂ O ₃ /FeO/Fe(0)@LP C	0.77	2 e-	80	this work
LP-C(Fe) 2(14.5)	α -Fe ₂ O ₃ /FeO/Fe(0)@LP C	0.72	4 e ⁻	8	this work
Fe-CNT	Fe-C-O	0.82	2 e-	95	1
CG400	-	0.72	2 e-	93	2
O-CNT	-	0.73	2 e-	93	3
Fe ₃ O ₄ -graphene	Fe ₃ O ₄ nanoparticles	0.74	2 e-	80	4
CeO_2/C	-	0.75	2 e-	44	5
SnNi/C	-	0.70	2 e-	88	6
Fe ₂ O ₄ @NT	Fe ₂ O ₄		2. e-		7
NC@Fe ₂ O ₂ -CNT	γ -Fe ₂ O ₂ , Fe-N _x , and Fe ₅ C ₂	0.96	2. e ⁻	97.3	8
Fe_2O_2	(001) Fe ₂ O ₂	0.73	2 e-	100	
Fe ₂ O ₂	(012) Fe ₂ O _{3-x}	0.84	_	10	9
α -Fe ₂ O ₂ / σ -C ₂ N ₄	α -Fe ₂ O ₂	0.01	2 e ⁻ and 4 e ⁻	20	10
$Fe_{2}O_{4}NP$	Fe ₂ O ₄	-0.6 V vs. SCF (nH 8.5)	$2 e^{-}$ and $4e^{-}$	50	11
$v - Ee_2 O_2 / rGO$	v_{-} Fe ₂ O ₂	0.0 1 13: 502 (pri 0.5)	$2 e^{-1}$ and $1e^{-1}$	-	12
$I P_{-C}(F_{e}) = 1(3,0)$	$n - Fe_2 O_2 / Fe(0)$	0.78	2+2 C 2 e- and 4 e-	40	this work
$IP_{-C}(Fe) = 1(12.1)$	FeaO	0.80		-+0 2	this work
$E_{1} - C(1C) - I(12.1)$ $E_{2} - C(1C) - I(12.1)$	Fe ₃ O ₄	0.80	4 c 4 e-	2	13
$\alpha \text{ Fe } \Omega \otimes \text{NT}$	rc_2O_3	0.97	4 c 4 e ⁻	-	15
$u - re_2 O_3 w N r$	α -re ₂ O ₃	0.02	40		14
γ -re ₂ O ₃ (ω CNr E ₂ /E ₂ O /NSC	γ -re ₂ O ₃ Eq. N and Eq. O	0.92	40	-	14
$Fe_{SA}/FeO_{NC}/NSC$	F_2O_3	0.99	40	15	15
$Fe_2O_3/N-PCS-850$	Fe_2O_3	0.936	4 e	5	10
$Fe_2O_3/FeN_x @CNF$	Fe_2O_3 and $Fe-N$	1.10	4 e	3	17
$Fe_2O_3(w)CNF$	Fe_2O_3		4 e	20	
$Fe-Fe_2O_3@NGr$	$Fe(0)$, Fe_2O_3 , and $Fe-N$	0.075 V vs. Hg/HgO		13	18
$Fe-Fe_2O_3(a)KGO$	$Fe(0)$ and Fe_2O_3	-0.07 V Vs. Hg/HgO	4	51.2	10
Fe_2O_3 (<i>a</i>) Fe-N-C-800	Fe_2O_3 and Fe-N	1.02	4 e-	-	19
$Fe/Fe_2O_3/Fe_3C@N-$	Hollow particles	0.90	4 e-	2	20
CNT	Fe/Fe ₂ O ₃ /Fe ₃ C	0.00			
Fe-CNSs-N	α -Fe ₂ O ₃ and Fe ₃ O ₄	0.90	4 e⁻	-	21
FeN_x/Fe_2O_3 -CNF	γ -Fe ₂ O ₃ and Fe-N	0.87	4 e-	6	22
Fe ₂ O ₃ /N-bio-C	Fe_2O_3	0.90	hybrid	-	23
Fe and N co-doped C	Fe-N-C	0.51 (neutral pH)	4 e ⁻	-	24
$OMCS-Fe_2O_3$		0.804	4 e ⁻	-	25
Fe ₂ O ₃ @NC-800	γ-Fe ₂ O ₃	0.97	4 e ⁻	1.20	26
Fe_3O_4 - GO	Fe_3O_4		4 e-	-	27
Fe ₂ O ₃ /GO	Fe_2O_3	0.85	2+2e-	-	28
Fe/N-CNTs	Fe-N	0.862	4 e-		29
P-Fe-C-900	P-Fe-C	0.825	4 e-	15	30
Hemin/NPC-900	Fe-N-C	0.99	4 e-	-	31
Fe@N/HCS	Fe_3O_4	0.90	4 e-	15	32
Fe ₃ O ₄ @NHCS	Fe_3O_4	0.9	4 e-	-	33
Fe ₃ O ₄ /Fe ₃ C@NC-1	Fe ₃ O ₄ and Fe ₃ C	0.97	4 e⁻	10	34
Fe ₃ O ₄ NPs/NGC	Fe_3O_4	1.015	4 e-	9	35
COP@K10-Fe-900	Fe ₃ O ₄ and Fe-N-C	0.97	4 e-	10	36
Fe ₃ O ₄ @NGA	Fe_3O_4	0.92	4 e-	-	37
Fe ₃ O ₄ /FeNSG-3	Fe-N-C and Fe ₃ O ₄	0.951	4 e-	6	38
	Fe_3O_4 with o-vacancies	0.07	4		20
C-FePPDA-900	on n-doped carbon	0.87	4 e ⁻	7.5	39
Fe ₃ O ₄ @FeNC	Fe ₃ O ₄ and Fe-N		4 e-	2	40
Fe ₃ O ₄ /NCMTs- 800(IL)	Fe ₃ O ₄	0.794	4 e-	-	41

Table S4. Overview of onset potentials and H_2O_2 production efficiencies of previously published and our materials in alkaline electrolyte. The onset potential was calculated by the intercept with X-axes of the tangent to the LSV curve at E1/2. The values in Table S4 are either given in the text or estimated from the data given in each manuscript.

References

- 1 K. Jiang, S. Back, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J. K. Nørskov, S. Siahrostami and H. Wang, *Nat. Commun.*, 2019, **10**, 3997.
- 2 Y.-H. Lee, F. Li, K.-H. Chang, C.-C. Hu and T. Ohsaka, *Appl. Catal. B Environ.*, 2012, **126**, 208–214.
- Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, Di. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov and Y. Cui, *Nat. Catal.*, 2018, **1**, 156–162.
- 4 W. R. P. Barros, Q. Wei, G. Zhang, S. Sun, M. R. V Lanza and A. C. Tavares, *Electrochim. Acta*, 2015, **162**, 263–270.
- 5 M. H. M. T. Assumpção, A. Moraes, R. F. B. De Souza, I. Gaubeur, R. T. S. Oliveira, V. S. Antonin, G. R. P. Malpass, R. S. Rocha, M. L. Calegaro, M. R. V Lanza and M. C. Santos, *Appl. Catal. A Gen.*, 2012, 411–412, 1–6.
- 6 V. S. Antonin, M. H. M. T. Assumpção, J. C. M. Silva, L. S. Parreira, M. R. V Lanza and M. C. Santos, *Electrochim. Acta*, 2013, **109**, 245–251.
- 7 Y. Xue, W. Jin, H. Du, S. Wang, S. Zheng and Y. Zhang, *RSC Adv.*, 2016, 6, 41878–41884.
- X. Cheng, S. Dou, G. Qin, B. Wang, P. Yan, T. T. Isimjan and X. Yang, *Int. J. Hydrogen Energy*, 2020, 45, 6128–6137.
- 9 R. Gao, L. Pan, Z. Li, C. Shi, Y. Yao, X. Zhang and J.-J. Zou, Adv. Funct. Mater., 2020, 30, 1910539.
- 10 S. Dutta, T. K. Jana, R. Maiti, K. De and K. Chatterjee, *ChemistrySelect*, 2021, 6, 11759–11767.
- 11 Y. Xiao, J. Hong, X. Wang, T. Chen, T. Hyeon and W. Xu, J. Am. Chem. Soc., 2020, 142, 13201–13209.
- 12 Q. Feng, Z. Chen, K. Zhou, M. Sun, X. Ji, H. Zheng and Y. Zhang, *ChemistrySelect*, 2021, 6, 8177–8181.
- 13 H. Zhao, J. Wang, C. Chen, D. Chen, Y. Gao, M. Saccoccio and F. Ciucci, *RSC Adv.*, 2016, **6**, 64258–64265.
- 14 Z. Yao, Y. Li, D. Chen, Y. Zhang, X. Bao, J. Wang and Q. Zhong, *Chem. Eng. J.*, 2021, 415, 129033.
- 15 Y. Lei, F. Yang, H. Xie, Y. Lei, X. Liu, Y. Si and H. Wang, J. Mater. Chem. A, 2020, 8, 20629–20636.
- 16 T. Zhang, L. Guan, C. Li, J. Zhao, M. Wang, L. Peng, J. Wang and Y. Lin, *Catalysts*, 2018, **8**, 101.
- 17 M. Wang, T. Liao, X. Zhang, J. Cao, S. Xu, H. Tang and Y. Wang, Adv. Mater. Interfaces, 2022, 9, 2101904.
- 18 V. M. Dhavale, S. K. Singh, A. Nadeema, S. S. Gaikwad and S. Kurungot, Nanoscale, 2015, 7, 20117–20125.
- 19 X. Xu, C. Shi, Q. Li, R. Chen and T. Chen, *RSC Adv.*, 2017, 7, 14382–14388.
- 20 B. Zhang, T. Li, L. Huang, Y. Ren, D. Sun, H. Pang, J. Yang, L. Xu and Y. Tang, *Nanoscale*, 2021, 13, 5400– 5409.
- 21 Y. Wang, R. Gan, H. Liu, M. Dirican, C. Wei, C. Ma, J. Shi and X. Zhang, *J. Mater. Chem. A*, 2021, **9**, 2764–2774.
- 22 Q. Yu, S. Lian, J. Li, R. Yu, S. Xi, J. Wu, D. Zhao, L. Mai and L. Zhou, *J. Mater. Chem. A*, 2020, **8**, 6076–6082.
- 23 Y. Wu, H. Jiao, M. Hou and P. Zhang, J. Phys. Conf. Ser., 2021, 2079, 12002.
- 24 Y. Su, H. Jiang, Y. Zhu, W. Zou, X. Yang, J. Chen and C. Li, J. Power Sources, 2014, 265, 246–253.
- 25 J. He, B. Li, J. Mao, Y. Liang, X. Yang, Z. Cui, S. Zhu and Z. Li, J. Mater. Sci., 2017, 52, 10938–10947.
- 26 Z. Xiao, G. Shen, F. Hou, R. Zhang, Y. Li, G. Yuan, L. Pan, J. J. Zou, L. Wang, X. Zhang and G. Li, *Catal. Sci. Technol.*, 2019, 9, 4581–4587.
- 27 K. Lellala, *Energy & Fuels*, 2021, **35**, 8263–8274.
- 28 S. Arya Gopal, A. Edathiparambil Poulose, C. Sudakar and A. Muthukrishnan, ACS Appl. Mater. Interfaces, 2021, 13, 44195–44206.
- 29 W. Liu, K. Yuan, Q. Ru, S. Zuo, L. Wang, S. Yang, J. Han and C. Yao, *Arab. J. Chem.*, 2020, **13**, 4954–4965.
- 30 Z. Yang, J. Wu, X. Zheng, Z. Wang and R. Yang, J. Power Sources, 2015, 277, 161–168.
- 31 Z. Lu, J. Chen, W. Wang, W. Li, M. Sun, Y. Wang, X. Wang, J. Ye and H. Rao, *Small*, 2021, 17, 2007326.

- 32 B. Wang, Y. Ye, L. Xu, Y. Quan, W. Wei, W. Zhu, H. Li and J. Xia, Adv. Funct. Mater., 2020, 30, 2005834.
- 33 Y. Li, H. Huang, S. Chen, X. Yu, C. Wang and T. Ma, *Nano Res.*, 2019, 12, 2774–2780.
- 34 M. Liu, X. Guo, L. Hu, H. Yuan, G. Wang, B. Dai, L. Zhang and F. Yu, *ChemNanoMat*, 2019, **5**, 187–193.
- 35 Y. Chen, L. Li, X. Liu, W. Wan and J. Luo, *Mater. Res. Express*, 2019, **6**, 65019.
- 36 J. Guo, Y. Cheng and Z. Xiang, ACS Sustain. Chem. Eng., 2017, 5, 7871–7877.
- Z. Liang, W. Xia, C. Qu, B. Qiu, H. Tabassum, S. Gao and R. Zou, *ChemElectroChem*, 2017, 4, 2442–2447.
- 38 Y. Li, Y. Zhou, C. Zhu, Y. H. Hu, S. Gao, Q. Liu, X. Cheng, L. Zhang, J. Yang and Y. Lin, *Catal. Sci. Technol.*, 2018, 8, 5325–5333.
- 39 Y. Deng, X. Tian, G. Shen, Y. Gao, C. Lin, L. Ling, F. Cheng, S. Liao and S. Zhang, J. Colloid Interface Sci., 2020, 567, 410–418.
- 40 S. Hu, W. Ni, D. Yang, C. Ma, J. Zhang, J. Duan, Y. Gao and S. Zhang, *Carbon N. Y.*, 2020, 162, 245–255.
- 41 G. Liu, B. Wang, P. Ding, Y. Ye, W. Wei, W. Zhu, L. Xu, J. Xia and H. Li, *J. Alloys Compd.*, 2019, **797**, 849–858.