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Comment [신]:  C-H 계산 데이터 논의 

후 수정 필요. 일단은 리뷰어2의 

3번째 질문 답을 복붙해두었음.

Fig. S1 DFT-calculated structures and energies of H, OH, and H2O absorbed Ni−N3V system. 

The grey, blue, red, light-green and cyan spheres represent carbon, nitrogen, oxygen, nickel 

and hydrogen atoms, respectively. The adsorption energy (Eads) of each adsorbate are 

computed as the following steps: Eads.H = E(H-Ni−Ni3V) E(Ni−N3V)  1/2E(H2), Eads.OH  ‒   ‒

= E(OH-Ni−Ni3V) E(Ni−N3V) E(H2O) 1/2E(H2), and Eads.H2O = E(H2O-‒ ‒ +

Ni−Ni3V) E(Ni−N3V) E(H2O). Note that the Eads. does not include an entropic ‒ ‒

contribution. For example, a dramatic entropic cost is expected for the binding of liquid water 

(Swat(liq.) = 69.9 J K-1 mol-1, converting into the free energy cost of 0.22 eV at 300K).



Fig. S2 Grand-canonical energy profiles versus RHE (pH = 6.8) of Ni–N4, Ni–N3O, and Ni–

N3V systems with two different Ni oxidation states—Ni2+ and Ni1+—are compared.



Fig. S3 Change of local spin (S) at the Ni1+ center for Ni–N4 (blue), Ni–N3O (coral), and Ni–

N3V (green) systems with RHE (pH = 6.8).



Fig. S4 DFT-calculated geometry of the CO2 adsorption step on the Ni2+ sites. Each 

simulation cell had an excess charge corresponding to -2.0 e, and the potentials versus SHE 

(VSHE) corresponding to the excess charge were specified.



 

Fig. S5 Change of partial charges on the Ni center (blue) and C atom of the CO2 (grey) 

depending on the applied potential Uappl. No charge transfer is observed between Ni2+ and CO2.



Fig. S6 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH 

= 6.8) of the CO2, COOH, and CO intermediates adsorbed on the Ni−N4 system. 



Fig. S7 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH 

= 6.8) of the CO2, COOH, and CO intermediates adsorbed on the Ni−N3O system. 



Fig. S8 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH 

= 6.8) of the CO2, COOH, and CO intermediates adsorbed on the Ni−N3V system. 


