Supporting Information

Enhanced Electroreduction of CO₂ by Ni–N–C Catalysts from the Interplay Between Valency and Local Coordination Symmetry

Dongyup Shin,^a Hansol Choi,^b Jihun An,^a Chang Ho Sohn, ^{c,d} Chang-Hyuck Choi,^c Hyeyoung Shin,^{*f} and Hyungjun Kim^{*a}

^aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

^bSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

^cDepartment of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.

^dGraduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea.

^eDepartment of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea

^fGraduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea.

*Corresponding authors: (H. Kim) linus16@kaist.ac.kr (H. Shin) shinhy@cnu.ac.kr

Fig. S1 DFT-calculated structures and energies of H, OH, and H₂O absorbed Ni–N₃V system. The grey, blue, red, light-green and cyan spheres represent carbon, nitrogen, oxygen, nickel and hydrogen atoms, respectively. The adsorption energy (ΔE_{ads}) of each adsorbate are computed as the following steps: $\Delta E_{ads.H} = E(\text{H-Ni}-\text{Ni}_3\text{V}) - E(\text{Ni}-\text{N}_3\text{V}) - 1/2E(\text{H}_2), \Delta E_{ads.OH}$ $= E(\text{OH-Ni}-\text{Ni}_3\text{V}) - E(\text{Ni}-\text{N}_3\text{V}) - E(\text{H}_2\text{O}) + 1/2E(\text{H}_2), \text{ and } \Delta E_{ads.H2O} = E(\text{H}_2\text{O}-\text{Ni}-\text{Ni}_3\text{V}) - E(\text{H}_2\text{O})$. Note that the $\Delta E_{ads.}$ does not include an entropic contribution. For example, a dramatic entropic cost is expected for the binding of liquid water $(S_{wat(\text{liq})}) = 69.9 \text{ J K}^{-1} \text{ mol}^{-1}$, converting into the free energy cost of 0.22 eV at 300K).

Comment [□]: C-H 계산 데이터 논의 후 수정 필요. 일단은 리뷰어2의 3번째 질문 답을 복붙해두었음.

Fig. S2 Grand-canonical energy profiles versus RHE (pH = 6.8) of Ni–N₄, Ni–N₃O, and Ni–N₃V systems with two different Ni oxidation states—Ni²⁺ and Ni¹⁺—are compared.

Fig. S3 Change of local spin (S) at the Ni¹⁺ center for Ni–N₄ (blue), Ni–N₃O (coral), and Ni–N₃V (green) systems with RHE (pH = 6.8).

Fig. S4 DFT-calculated geometry of the CO_2 adsorption step on the Ni²⁺ sites. Each simulation cell had an excess charge corresponding to -2.0 *e*, and the potentials versus SHE (V_{SHE}) corresponding to the excess charge were specified.

Fig. S5 Change of partial charges on the Ni center (blue) and C atom of the CO₂ (grey) depending on the applied potential U_{appl} . No charge transfer is observed between Ni²⁺ and CO₂.

Fig. S6 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH = 6.8) of the CO₂, COOH, and CO intermediates adsorbed on the Ni–N₄ system.

Fig. S7 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH = 6.8) of the CO₂, COOH, and CO intermediates adsorbed on the Ni–N₃O system.

Fig. S8 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH = 6.8) of the CO₂, COOH, and CO intermediates adsorbed on the Ni–N₃V system.