Supplementary Information

Confining MoS₂ Nanodots into Compact Layered Graphene Blocks for High Volumetric Capacity, Fast, and Stable Sodium Storage

Shichuan Liang,^a Su Zhang,^{*b} Zheng Liu,^b Jing Feng,^a Yuting Jiang,^a Mingming Gao,^a Di Geng,^a Tong Wei,^{*a, b} and Zhuangjun Fan,^{*a, b}

^aKey Laboratory of Superlight Materials and Surface Technology, Ministry of Education; College

of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001,

P. R. China

^bState Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China.

* Corresponding author: fanzhj666@163.com (Z. Fan); suzhangs@163.com (S. Zhang); weitong666@163.com (T. Wei)

Fig. S1. (a, b) TEM images of PANI@GO, and the corresponding element mappings of (c) carbon, (d) nitrogen, and (e) oxygen elements.

Fig. S2. (a) SEM image, (b) TEM image, (c) high-angle annular dark-field image, and the corresponding element mappings of (d) C, (e) Mo, and (f) N elements for DNG/MoS_2 .

Fig. S3. SEM images of G/MoS₂.

Fig. S4. SEM images of NG/MoS₂.

Fig. S5. (a) Thermogravimetric analysis of DNG/MoS₂, NG/MoS₂, and G/MoS₂, showing the remained weight percentage of 76.4%, 77.9%, and 79.8%, respectively. (b) Thermogravimetric analysis of bare MoS₂, showing the oxidation temperature of 400°C. For the detailed calculation of weight percentage of MoS₂ in DNG/MoS₂, G/MoS₂, and NG/MoS₂, set the initial DNG/MoS₂ mass is *m*, the MoS₂ weight percentage is *x*. Thus, the molar content of MoS₂ is *mx*/160. According to the TG curves, the remained mass percentage of MoO₃ is 76.4%, the molar content of MoO3 is 76.4%**m*/144. Since the Mo atom doesn't disappear during the transformation from MoS₂ to MoO₃, leading to the equal of molar quantity between MoS₂ and MoO₃, i.e., $mx - 76.4\% \times m$

 160^{-144} . Therefore, the weight percentage of MoS₂ in DNG/MoS₂ is calculated to be 84.9%. Similarly, the mass content of MoS₂ in G/MoS₂ and NG/MoS₂ are calculated to be 86.5% and 88.7%, respectively.

Fig. S6. N_2 adsorption-desorption isotherms for (a) G/MoS_2 and (b) NG/MoS_2 .

Fig. S7. Schematical illustration of volume shrinkage of $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ to MoS_2 . $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ would shrink to 47.3% of its original volume after converted to MoS_2 .

Fig. S8. The front, top, and left views of the initial DNG/MoS₂ model. The density functional theory calculations were carried out with the generalized gradient approximation (GGA) from Perdew-Burke-Ernzerhof (PBE) by using the CASTEP program of Material Studio software. The plane-wave energy cutoff was set to be 517.0 eV with a SCF tolerance of 1.0×10^{-6} eV atom⁻¹. The used model is based on the characteristic results of TEM image and XRD pattern, i.e., the small MoS₂ nanodots are distributed between N-doped graphene layers. The 6×6 graphene supercell and 3×3 MoS₂ supercell were used to construct DNG/MoS₂ model. The nitrogen doping type was set as graphitic N. The vacuum distance of graphene was set as 20 Å to avoid the interlayer interaction.

Fig. S9. (a) CV curves of DNG/MoS₂ at 0.1 mV s⁻¹. (b) In-situ XRD patterns of DNG/MoS₂ for the first cycle (the sharp peak is correlated to Be in the in-situ XRD equipment).Meanwhile, there is also the accompanying formation of S species because of the insufficient conversion (reaction 5). Thereafter, a peak at 1.8 V in second discharge cycle is correlated to the conversion of S to Na₂S (reaction 6), which is similar to the mechanism of Na/S batteries.^{1, 2}

Reaction 1 (interaction, the first discharge):

$$2H - MoS_2 + xNa^+ + xe^+ \rightarrow 1T - Na_xMoS_2$$

Reaction 2 (conversion, the first discharge):

$$1T - Na_x MoS_2 + (4 - x)Na^+ + (4 - x)e^- \rightarrow 2Na_2S + Mo$$

Reaction 3 (deconversion, the first charge):

Reaction 4 (deintercalation, the first charge):

$$1T - NaMoS_2 \rightarrow 1T - MoS_2 + Na^+ + e^-$$

Reaction 5 (deintercalation, the first charge):

$$Na2S + 2e^- \rightarrow 2Na + S$$

Reaction 6 (deintercalation, the second discharge):

 $S + 2Na^+ + 2e^- \rightarrow Na2S$

Fig. S10. High-resolution TEM image of DNG/MoS_2 electrode discharged to 0.01 V.

Fig. S11. The charge-discharge curves of DNG/MoS_2 , NG/MoS_2 , and G/MoS_2 at 0.1 A g⁻¹ for the first three cycles.

Fig. S12. CV curves at the scan rates from 0.1 to 20 mV s⁻¹ for (a) G/MoS_2 and (b) NG/MoS₂.

Fig. S13. The charge-discharge curves of DNG/MoS_2 , NG/MoS_2 , and G/MoS_2 at different current densities from 0.1 to 10 A g⁻¹.

Fig. S14. Discharge-charge profiles of graphene and N-doped graphene at 0.1 A g⁻¹. The galvanostatic charge-discharge profiles show the discharge capacities of 192 mAh g⁻¹ and 141 mAh g⁻¹ at 0.1 A g⁻¹ for N-doped graphene and graphene nanosheets, respectively. Taking DNG/MoS₂ as an example, the mass content of MoS₂ is determined to be 84.9 wt.%, i.e., there is 15.1 wt.% of N-doped graphene in DNG/MoS₂. Based on the equation:

$$C_{NG in DNG/MoS_2} = C_{NG} \times M_{NG}$$

where the C_{NG} and M_{NG} are capacities delivered by N-doped graphene and mass content of N-doped graphene, respectively. $C_{NG \text{ in } DNG/MoS_2}$, the capacity contribution of N-doped graphene in DNG/MoS₂, is calculated to be 29 mAh g⁻¹, which accounts for only 5.6% of DNG/MoS₂ (514 mAh g⁻¹ at 0.1 A g⁻¹). The graphene and N-doped graphene contents in G/MoS₂ and NG/MoS₂ are 11.3% and 13.5%, respectively. By the same procedure, the capacity contributions of graphene and N-doped graphene in D/MoS₂ and NG/MoS₂ are calculated to be 16 and 26 mAh g⁻¹, accounting for only 3.8% and 5.9% in G/MoS₂ and NG/MoS₂, respectively.

Fig. S15. The optical photographs of the compressed DNG/MoS₂ tablet. DNG/MoS₂ was compressed using a laboratorial hydraulic machine in a FT-IR die under the pressure of 10 MPa, which is equal to the pressure of electrode calendaring.

Fig. S16. SEM image of DNG/MoS₂ electrode before sodiation. To calculate the volumetric capacity of the slurry casting electrode, in detail, the thickness (*h*) of slurry casting electrode is 10.2 µm, the area (*S*) is 0.785 cm⁻², the volume (*V*) of slurry casting electrode is $V = \pi \times S$; the specific capacity (*Cs*) of DNG/MoS₂ at 0.1 A g⁻¹ is 514 mAh g⁻¹, the mass of DNG/MoS₂ (*m*) is 1.2 mg, the capacity delivered by DNG/MoS₂ in slurry casting slurry electrode (*C*) is $C = Cs \times m$. Therefore, the volumetric capacity of slurry casting electrode (*Cv*) can be calculated by equation $Cv = \frac{C}{V}$, resulting in 770 mAh cm⁻³ at 0.1 A g⁻¹.

Fig. S17. Equivalent circuit for EIS spectra.

Fig. S18. Discharge GITT curves of DNG/MoS₂, NG/MoS₂, and G/MoS₂. The cell was discharged at 0.1 A g⁻¹ for 20 min and then relaxed for 60 min to enable the potential equilibrium. The D_{Na} can be calculated by the simplified equation: ³

$$D_{Na} = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B A}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2$$

where τ is the duration time of the current pulse, m_B is the mass of the active material (g), M_B is the molecular weight (g mol⁻¹), V_M is the molar volume (cm³ mol⁻¹), A is the total contact area between electrode and electrolyte (cm²), $\Delta E \tau$ is the change of transient voltage (V), and ΔE_S is related to the change of steady-state voltage for the corresponding step.

Fig. S19. Current response against the scan rates at peak potentials of DNG/MoS_2 .

Fig. S20. Capacitive contributions of (a) G/MoS₂ and (b) NG/MoS₂ at 1 mV s⁻¹. The quantitative capacitive contribution under the given scan rate is obtained based on the following equation:⁴ $i = k_1 v + k_2 v^{1/2}$

$$i/v^{1/2} = k_1 v^{1/2} + k_2$$

where k_1 and k_2 are appropriate values, i (A g⁻¹) is current density, v (mV s⁻¹) is scan rate, and k_1v and $k_2v^{1/2}$ are capacitive contribution and diffusion contribution, respectively.

Fig. S21. Capacitance contributions for DNG/MoS_2 at different scan rates.

Fig. S22. SEM image of post-cycled DNG/MoS_2 electrode.

Fig. S23. TEM image and the corresponding element mappings of the post-cycled DNG/MoS_2 .

Fig. S24. TEM image of the post-cycled bare MoS_2 electrode.

Fig. S25. (a) Schematic illustration of assembled activated carbon//DNG/MoS₂ SIC. (b) CV curves of activated carbon and DNG/MoS₂ at scan rate of 1 mV s⁻¹. (c) Galvanostatic chargedischarge profiles of the SIC at current densities of 0.1-50 A g⁻¹. (d) Comparison of Ragone plots of the activated carbon//DNG/MoS₂ SIC with previously reported SICs. (e) Cycle performance of as-assembled SIC at 5 A g⁻¹.

Fig. S26. The electrochemical performance of activated carbon at the potential window of 2-4 V in sodium half-cell: (a) CV curves at scan rates from 0.1 to 2 mV s⁻¹, (b) discharge-charge profiles from 0.1 to 10 A g⁻¹, (c) cycling performance at 1 A g⁻¹, and (d) discharge-charge profiles at 1 A g⁻¹.

Fig. S27. CV curves of DNG/MoS $_2$ //activated carbon SIC with a minimum voltage of 0.01 V and various maximum voltage of 3.5-4.5 V at 1 mV s⁻¹.

and D-Mo/PANI@GO. Samples $Pore volume ext{Specific surface area} (cm^{-3} g^{-1}) ext{(}m^2 g^{-1})$

Table S1. The pore volumes and the specific surface areas of DNG/MoS₂, NG/MoS₂, G/MoS₂,

Samples	$(cm^{-3} g^{-1})$	$(m^2 g^{-1})$
DNG/MoS ₂	0.086	37.3
NG/MoS ₂	0.086	54.3
G/MoS ₂	0.041	10.4
D-Mo/PANI@GO		8.6

Samples	Electronical conductivity (S cm ⁻¹)			Average value (S cm ⁻¹)
Bare MoS ₂	24.5*10-6	28.4*10-6	35.8*10-6	29.6*10-6
DNG/MoS ₂	11.0	10.3	9.8	10.4

Table S2. The electronical conductivity of bare MoS_2 and DNG/MoS_2 .

Samples	Rs (Ω)	$R_{ct}(\Omega)$	$\mathrm{Z}_{\mathrm{w}}\left(\Omega ight)$
G/MoS ₂	3.8	243.9	595.0
NG/MoS ₂	2.8	453.8	403.5
DNG/MoS ₂	2.2	86.2	194.2

Table S3. The resistance values of DNG/MoS_2 , NG/MoS_2 , and G/MoS_2 .

Calculations

Electrochemical calculations for the assembled sodium ion capacitor

The specific capacitance (F g⁻¹) of sodium ion capacitor is calculated by the following equation:

$$C = \frac{I\Delta t}{\Delta V}$$

where I (A g⁻¹) is the current density, Δt (s) is the discharge time, and ΔV (V) is the voltage window.

The specific energy density (*E*, Wh kg⁻¹) and specific power density (*P*, W kg⁻¹) were calculated by the following equation:

$$E = \frac{1}{2}CV^2$$
$$P = \frac{E}{\Delta t}$$

where C (F g⁻¹) is the specific capacitance, V is the voltage range of discharge process excluding the *IR* drop, and Δt (s) is the discharge time. Here, the energy density (Wh kg⁻¹) and power density (W kg⁻¹) of the SICs were calculated based on the total mass of cathode and anode.

Reference

- B. Chen, T. Wang, S. Zhao, J. Tan, N. Zhao, S. P. Jiang, Q. Zhang, G. Zhou and H.-M. Cheng, *Adv. Mater.*, 2021, **33**, 2007090.
- B. Chen, H. Lu, J. Zhou, C. Ye, C. Shi, N. Zhao and S.-Z. Qiao, *Adv. Energy Mater.*, 2018, 8, 1702909.
- S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao, Q. Tan, N. Zhang, P. Li, L. Jiao and X. Qu, 2021, *Adv. Mater.*, 2021, 33, 2007480.
- C. Zhao, C. Yu, M. Zhang, Q. Sun, S. Li, M. Norouzi Banis, X. Han, Q. Dong, J. Yang, G. Wang, X. Sun and J. Qiu, *Nano Energy*, 2017, 41, 66-74.