Electronic Supplementary Information:

MXene with controlled surface termination groups for boosting photoelectrochemical water splitting

Zihao Wu^{a,d}, Hui Zong^b, Baihe Fu^a, Zhonghai Zhang^{a,c,*}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineer-ing, East China Normal University, Shanghai 200241, China

^b Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China

^c Institute of Eco-Chongming, East China Normal University, 20 Cuiniao Road,
Chongming District, Shanghai 202162, China

^d Present address: Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineer-ing, Peking University, Beijing 100871, China

E-mail: zhzhang@chem.ecnu.edu.cn

Fig. S1 SEM image and XRD pattern of MAX phase of Ti_3AlC_2 .

Fig. S2 SEM image, corresponding elemental mapping, and EDS curve of multilayer Br-MXene.

Fig. S3 Morphology and elemental distribution of Cl-MXene. (a) SEM image of multilayer Cl-MXene, (b) TEM image of few-layer Cl-MXene, and (c) SEM image and elemental distribution of Ti, C, and Cl of Cl-MXene.

Fig. S4 Morphology and elemental distribution of I-MXene. (a) SEM image of multilayer I-MXene, (b) TEM image of few-layer I-MXene, and (c) SEM image and elemental distribution of Ti, C, and I of I-MXene.

Fig. S5 Tyndall effect of few-layer Br-MXene in aqueous solution.

Fig. S6 Morphological and PEC performance of $BiVO_4$ with different thickness. (a1) Cross-sectional SEM image and (a2) LSV curve under illumination of AM 1.5G of $BiVO_4$ with 120 nm thickness; (b1) cross-sectional SEM image and (b2) LSV curve under illumination of AM 1.5G of $BiVO_4$ with 240 nm thickness; (c1) cross-sectional SEM image and (c2) LSV curve under illumination of AM 1.5G of $BiVO_4$ with 360 nm thickness; (d1) cross-sectional SEM image and (d2) LSV curve under illumination of AM 1.5G of $BiVO_4$ with 420 nm thickness. The scale bar is 500 nm.

Fig. S7 Tauc plots of BiVO₄/CoBi, Cl-MXene/BiVO₄/CoBi, and I-MXene/BiVO₄/CoBi.

Fig. S8 SEM image of BiVO4 and Br-MXene/BiOV4/CoBi before and after stability test.

Fig. S9 PEC performance of Cl-MXene/BiVO₄ and I-MXene/BiVO₄. (a) LSV curve under illumination of AM 1.5G, (b) photoconversion efficiency at different potentials, and (c) IPCE plot of Cl-MXene/BiVO₄/CoBi; (d) LSV curve under illumination of AM 1.5G, (b) photoconversion efficiency at different potentials, and (c) IPCE plot of I-MXene/BiVO₄/CoBi.

Fig. S10 Onset potentials of BiVO₄/CoBi, Cl-MXene/BiVO₄/CoBi, Br-MXene/BiVO₄/CoBi, and I-MXene/BiVO₄/CoBi photoanodes.

Fig. S11 LSV curves of $BiVO_4/CoBi$, Cl-MXene/BiVO_4/CoBi, Br-MXene/BiVO_4/CoBi, and I-MXene/BiVO_4/CoBi in the absence and presence of Na₂SO₃ under illumination of AM 1.5G.

Fig. S12 (a) Charge separation efficiency on BiVO₄/CoBi, Cl-MXene/BiVO₄/CoBi, Br-MXene/BiVO₄/CoBi, and I-MXene/BiVO₄/CoBi; (b) charge transfer efficiency on BiVO₄, BiVO₄/CoBi, Br-MXene/BiVO₄, and Br-MXene/BiVO₄/CoBi.

The charge separation efficiency and surface charge transfer efficiency of samples were estimated by using the following equations: ¹

LHE=1-10^{-A(λ)}

Where $A(\lambda)$ represents absorbance at wavelength equals λ . The maximum photocurrent density J_{max} was calculated from the number of photons above the photo-active range of BiVO₄ under AM 1.5G condition.

$$J_{abs} = J_{max} \times LHE$$

$$\eta_{sep} = J_{Na2SO3} / J_{abs}$$

$$\eta_{\text{trans}} = J_{\text{water}} / J_{\text{Na2SO3}}$$

As shown in Fig. S12a, the charge separation efficiency, estimated from comparison of photocurrent density in Na₂SO₃ (J_{Na2SO3}) and current density expressed from photon absorption rate (J_{abs}), on photoanodes of BiVO₄/CoBi, Cl-MXene/BiVO₄/CoBi, Br-MXene/BiVO₄/CoBi, and I-MXene/BiVO₄/CoBi were recorded. The Y-MXene/BiVO₄/CoBi (Y = Cl, Br, and I) presented certain amount of increase on charge separation efficiency to pristine BiVO₄/CoBi, but the increase was not significant. However, as shown in Fig. S12b, the charge transfer efficiency, estimated from ratios of photocurrent density in water (J_{water}) and photocurrent density in Na₂SO₃ (J_{Na2SO3}), displayed obvious increase after modification of CoBi. The above results helped to indicate the electron transfer layer and hole transfer layer of Y-MXene and CoBi, respectively.

Fig. S13 Open circuit potential (OCP) of BiVO₄ and Br-MXene/BiVO₄ with light-on-off model.

Fig. S14 Mott-Schottky plots of Cl-MXene/BiVO₄ and I-MXene/BiVO₄.

Fig. S15 UPS and valence spectra of Cl-MXene/BiVO₄ and I-MXene/BiVO₄.

Fig. S16 Fabrication procedures of (a) BiVO₄ and (b) MXene/BiVO₄.

Table S1.	Onset	potential	values	on	BiVO ₄ /CoBi	, Cl-MXene/BiVO ₄ /CoBi,	Br-
MXene/Bi	VO ₄ /Co	Bi, and I-	MXene	/BiV	VO4/CoBi ph	otoanodes.	

Sample	Onset potential (V vs. RHE)
BiVO ₄ /CoBi	0.395
Cl-MXene/BiVO ₄ /CoBi	0.365
Br-MXene/BiVO ₄ /CoBi	0.328
I-MXene/BiVO ₄ /CoBi	0.380

Table S2. Comparison of PEC performance of BiVO₄-based photoanodes.

Samples	Photocurrent density at 1.23 V vs RHE / mA cm ⁻²	Photocurrent density at 1.23 V vs RHE with hole scavenger / mA cm ⁻²	Stability	Ref
Mxene/BiVO ₄ /FeOOH	4.95	NA	77.6% after 2 h	Mater. Today Chem. 2022, 23, 100747
CoNi-MOFs/BiVO ₄ 3.2		NA	90% after 3 h	Appl. Catal. B, Environ. 2020, 266, 118513
F-BiVO ₄ @NiFe-LDH	2.67	NA	Stable for 10 min	Appl. Catal. B, Environ. 2020, 278, 119268
HCoAl-LDH/BiVO ₄	3.5	NA	86% after 3 h	Appl. Catal. B, Environ. 2021, 286, 119875
WO ₃ /BiVO ₄ /FeOOH/Ni OOH	5.5	NA	Stable for 5 h	Nano. Lett. 2017, 17, 8012-8017.
R-BiVO ₄	3.18	5.84	NA	ACS Appl. Energy Mater. 2020, 3, 4403- 4410
FeCoOx/BiVO ₄	4.82	4.82	Stable for 10 h	Adv. Funct. Mater. 2018, 28, 1802685
Mo:BiVO ₄ /NTO/Fe:NiO	5.6	NA	Stable for 16 h	Adv. Funct. Mater. 2021, 31, 2011210
C/BiVO ₄ /CQD	4.83	NA	Stable for 9 h	Adv. Funct. Mater. 2022, 32, 2112738
BiVO ₄ /Fe _x Ni _{1-x} OOH	5.8	NA	Stable for 3 h	Angew. Chem. Int. Ed. 2020, 59, 18990- 18995
CoBi/E-BiVO ₄	3.2	NA	80% after 1 h	Angew. Chem. 2017, 129, 8620-8624
Ov-BiVO4@NiFe-MOFs	5.3	5.3	Stable for 10 h	Angew. Chem. Int. Ed. 2021, 60, 1433- 1440
FeOOH/rGO/BiVO ₄	3.25	4.2	Stable for 3 h	ChemCatChem 2020, 12, 3769-3775
E-BiVO ₄ /BPQDs/OL- OEC	6.2	NA	Stable for 45 h	Energy Environ. Sci. 2022, 15, 672-679
OEC/MoO _x /MQD/BiVO 4	5.85	NA	97.5 % after 100 h	Angew. Chem. Int. Ed. 2022, 61, e202200946
NiOOH/BP/BiVO ₄	4.48	NA	Stable for 60 h	Nat. Commun. 2019, 10, 2001
La:BaSnO ₃ /Mo:BiVO ₄	5.15	NA	NA	Nat. Commun. 2019, 10, 2609
NiFeO _x /B-C ₃ N ₄ /Mo-	5.93	5.96	92% after 10 h	Nat. Commun. 2019, 10, 3687

BiVO ₄				
BiVO ₄ /N:NiFeO _x	6.4	NA	Stable for 5 h	Nat. Commun. 2021, 12, 6969
nanocone/Mo:BiVO ₄ /Fe(Ni)OOH	5.82	6.05	94.2% after 10 h	Sci. Adv. 2016, 2, e1501764
Br-MXene/BiVO ₄ /CoBi	5.47	5.91	Stable for 20 h	This work

Table S3 Flat band potentials and carrier density of BiVO₄/CoBi, Cl-MXene/BiVO₄/CoBi, Br-MXene/BiVO₄/CoBi, and I-MXene/BiVO₄/CoBi.

		-
Sample	U _{flat band} / V vs RHE	ND / 10^{18} cm ⁻³
BiVO ₄ /CoBi	0.143	5.04
Cl-MXene/BiVO ₄ /CoBi	0.153	7.61
Br-MXene/BiVO ₄ /CoBi	0.187	7.54
I-MXene/BiVO ₄ /CoBi	0.153	12.11