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S1. Identification and Classification of Split Interstitials 

We analyze each snapshot of the AIMD trajectory on the CsPbI3 grain boundary model as follows. 

First, all lead-iodine bonds are determined using a cutoff distance of 3.7 Å. The choice of the cutoff 

distance is to account for the strong dynamical fluctuations in the lead-iodine bonds. For all pairs 

of Pb atoms (PbA, PbB), we determine the amount of I atoms which form bonds with both PbA and 

PbB. In the typical crystal structure of CsPbI3 we expect maximum 1 I atom bonded to a pair of Pb 

atoms. If, however, the pair (PbA, PbB) shares 2 I atoms, a split interstitial is present.  

 

S2. Additional Figures 

 

 

 
Figure S1. Convergence test of the basis set on the density of states within CP2K. For 

computational details, we refer to section 2 of the manuscript. 
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Figure S2. Time evolution of the number of split interstitials in the (yellow) PbI-terminated and 

in the (grey) CsI-terminated region in (a) the center GB and (b) the top/bot GB. 

 

 

Figure S3. Time evolution of the number of 90° and 180° Pb–I–Pb bond angles in the (a) top/bot 

GB, (b) the center GB, and (b) in the bulk region. 
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Figure S4. (a) Distribution of the I–I distance of all split interstitials within the CPMD trajectory. 

(b)  Distribution of the Pb–Pb distance of all split interstitials from ab initio molecular dynamics 

simulations. 

 

Figure S5. (a) I–I distance and (b) Pb–Pb distance versus distance to the center of the nearest GB 

for all split interstitials from ab initio molecular dynamics simulations.  
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Table S1. Evaluation of the average geometry of the Frenkel-type defects. Reported are averages 

and standard deviations for the Pb–Pb distance, average I–I distance between all split iodine 

interstitial ions, and the average Pb–I bond length, as well as the average number of appearances 

of the respective configuration throughout the ab initio molecular dynamics simulations.  

Frenkel Defect Pb–Pb 

distance (Å)  

I–I distance (Å)   Pb–I bond length 

(Å)   

Avg. appearance 

Ii
− 4.51 ± 0.32 4.29 ± 0.50 3.55 ± 0.09 0.07 

Ii
−/VI

+ 4.53 ± 0.41 4.38 ± 0.41 3.55 ± 0.11 1.58 

Ii
−/2VI

+ 4.53 ± 0.41 4.36 ± 0.40 3.53 ± 0.12 0.99 

2Ii
−/2VI

+ 4.48 ± 0.40 4.32 ± 0.49 3.53 ± 0.09 0.24 

 

 

 

 
Figure S6. (a) CsPbI3 crystal structure with an Ii

− interstitial (highlighted). (b) Pb–I bond lengths 

and I–I as well as Pb–Pb  distances of the Ii
− interstitial in the optimized CsPbI3 crystal.  
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Figure S7. (a) Snapshots visualizing the mechanism of the Pb(B)–I(4) bond formation. (b) and (c) 

illustrate the Pb(B)–I(4) distance and the position of I(4) in purple and of Pb(B) in cyan in x and y 

direction, respectively.  



 

 S7 

 

 

 

Figure S8. (Top) Label of Pb ions in the center GB, showing the (left) front view and (right) back 

view. (Bottom) Time evolution of the Pb/I coordination number for each Pb ion in the center grain 

boundary. 



 

 S8 

 

 

Figure S9. Temporal evolution of the integral of the radial pair distribution function for (a) I/Pb 

and (b) Pb/Pb between t = 0 ps and t = 5 ps. The solid black curve illustrates the bulk values in 

CsPbI3 (see also Figure S8 and S9, Supporting Information), and the dashed line in (a) and (b) 

gives the int[g(r)] for PbI2. 
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Figure S10. Time evolution of the I/Pb radial pair distribution function, g(r), and its integral 

int[g(r)] for the (left) top/bot GB,  (middle) the center GB, and (right) the bulk. The dashed lines 

give the g(r) and int[g(r)] of the bulk CsPbI3. The color legend is given in the lower left panel 
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Figure S11. Time evolution of the Pb/Pb radial pair distribution function, g(r), and its integral 

int[g(r)] for the (left) top/bot GB,  (middle) the center GB, and (right) the bulk. The dashed lines 

give the g(r) and int[g(r)] of the bulk CsPbI3. The color legend is given in the lower left panel 
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Figure S12. Time evolution of the (a) Pb/I, (b) I/I, (c) Pb/Pb, (d) I/Pb, (e) Pb/Cs, and (f) I/Cs 

coordination number in the bulk (blue curves) and in the center grain boundary (red curves). 
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Figure S13. Time evolution of the (a) Pb/I, (b) I/I, (c) Pb/Pb, (d) I/Pb, (e) Pb/Cs, and (f) I/Cs 

coordination number in the bulk (blue curves) and in the PbI- (yellow curves) and in the CsI-

terminated (grey curves) region in the center grain boundary. 
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Figure S14. (Top) Snapshots visualizing the key steps during the bulk iodine Frenkel defect 

formation. Letters and numbers consistently label the Pb and the I ions, respectively. (Bottom) 

Time evolution of lead – iodine distances during Frenkel formation.  
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Figure S15. (a) Density of states of the optimized structures at t = 0 ps and at t = 6 ps. The energy 

of the 6 ps structure is of 1.03 eV lower than one of the initial structure. (b) HOMO and LUMO 

orbitals of the optimized structure at 4 ps. (c) Visualization of the optimized structure at t = 6 ps.  
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Table S2. Scf energies of the optimized grain boundary structures. We relaxed the ionic positions 

starting from the AIMD positions at t = {0, 2, 4, 6, 8} ps to a force threshold of 0.001 Ry/B3. ΔE 

gives the energy difference with respect to the initial configuration at 0 ps. 

 

Configuration Scf Energy (Ry) ΔE (eV) 

0 ps -28114.05472497 0 

2 ps -28114.08002343 -0.344 

4 ps -28114.12294985 -0.928 

6 ps -28114.13015124 -1.026 

8 ps -28114.09950294 -0.609 

 

 

Figure S16. Analysis of shallow trap states near the conduction band minimum at 5.4 ps and at 

7.2 ps, including the (left) DOS, (mid) geometry, and (right) orbital of the trap state. The trap states 

are attributed to Pb–Pb bonding states, localized between Pb ions separated by 4.09 and 4.15 Å.   
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Figure S17. (a) to (c): Density of states of the initial configuration (t = 0 ps) and averaged density 

of states, <MD>, on the AIMD snapshots for each 0.1 ps. (d) to (f): Averaged probability 

distribution |ψ|2 for the HOMO and the LUMO across the z-position. The GB regions are 

highlighted in red and green for the center and the top/bottom GB, respectively. 
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Figure S18. Density of states of two snapshots for supercell of a=12.695 Å, b=19.242 Å, c=76.972 

Å (reference) and for the duplicated cells along the short axis (a=25.39 Å, b=19.242 Å, c=76.972 

Å). Band edges and mid gap states are well captured by the reference system, which allows us to 

do single point calculations on the electronic structure based on the reference structure. 

 

S3. Drift-Diffusion Simulation Model 

To investigate the impact of grain boundaries on the photovoltaic performance, we use a finite 

element drift-diffusion model in 1-dimensional (1D) space. The model is implemented in 

TiberCAD multiscale simulation tool,1,2 and is based on numerically solving the drift-diffusion 

(DD) equations. The implemented model has already been used for the simulating perovskite solar 

cells,3,4 dye sensitized solar cells,5-7 organic solar cells,8,9 and light emitting diodes.10,11 The model 

considers the generation of electron-hole pairs upon light absorption and charge carrier transport 

simultaneously.  
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Figure S19. Schematic diagram of the one-dimensional perovskite solar cell model.  

 

The device model for the perovskite solar cell, Figure S16, consists of an electron transport 

layer (ETL), perovskite absorber, hole transport layer (HTL), and two thin buffer layers on each 

side of the perovskite to account for interface traps. Grain boundaries are modeled as 2 nm thick 

regions consisting of trap states and/or a shift in the conduction band minima. 

The charge carrier transport is governed by diffusion and electrically induced drift. We 

ignore the role of ionic defects for simplicity. The Poisson equation used in the simulation is: 

                                               ∇ ⋅ (𝜖∇ϕ) = −𝑞(𝑛 − 𝑝 + 𝑁𝑎
− − 𝑁𝑑

+ + 𝑛𝑡
− − 𝑛𝑡

+)          (1) 

The continuity equations for the charge carriers are given as: 

    ∇ ⋅ {𝜇𝑛𝑛(∇Φ𝑛)} = 𝐺 − 𝑅    for electrons                (2) 

    ∇ ⋅ {𝜇𝑝𝑝(∇Ф𝑝)} = −(𝐺 − 𝑅)  for holes          (3) 

Here, the electrostatic potential ϕ is a variable dependent on the charge carrier distribution. ϵ is 

the material dielectric permittivity, q is the electron charge, and 𝑛, 𝑝 are the electron and hole 

densities, respectively. 𝑁𝑎
−, 𝑁𝑑

+ are the ionized acceptor and donor impurities, respectively. 𝑛𝑡
−, 𝑛𝑡

+ 
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represent the donor and acceptor trap densities, respectively. 𝜇𝑛, 𝜇𝑝 denote the electron and hole 

mobility, respectively, and Φ𝑛, Φ𝑝 are the electron and hole electrochemical potentials, 

respectively. Net charge carrier generation and recombination rates are represented by G and R, 

respectively. 

Photogeneration in the perovskite absorber and the buffer regions is governed by the 

Lambert-Beer absorption model, with the electron-hole (e-h) pair generation at position z governed 

by: 

𝐺(𝑧) = ∫ 𝜑 (𝜆)𝛼 (𝜆)
𝜆max

𝜆min
exp(−𝛼(𝜆)𝑧) d𝜆     (4) 

where 𝜑(𝜆) is the intensity of solar irradiation, and 𝛼 is the absorption coefficient. For simplicity, 

the maximum e-h pair generation rate used in the simulation is 1.2 × 1022 cm−3s−1, which 

corresponds to absorption coefficient of approximately 8 μm−1. The direct (radiative) 

recombination of the charge carriers is calculated as: 

𝑅𝑑 = 𝑘𝑑  (𝑛𝑝 − 𝑛𝑖
2)         (5) 

where, 𝑘𝑑 is the direct recombination constant and ni  is the intrinsic charge carrier concentration. 

To account for the trap effect, the second recombination mechanism is represented by Shockley-

Read-Hall (SRH) recombination rate: 

𝑅SRH = 𝑁𝑡  
𝑣𝑡ℎ

𝑛  𝜎𝑛𝑣𝑡ℎ
𝑝

 𝜎𝑝(𝑛𝑝−𝑛𝑖
2)

𝑣𝑡ℎ
𝑛  𝜎𝑛 (𝑛+𝑛𝑐)+ 𝑣𝑡ℎ

𝑝
 𝜎𝑝 (𝑝+𝑝𝑣)

       (6) 

where, 𝑁𝑡 is the trap density, 𝜎𝑛, 𝜎𝑝 are the capture cross sections, 𝑣𝑡ℎ
𝑛 , 𝑣𝑡ℎ

𝑝
 are thermal velocities 

of electrons and holes, respectively. 𝑛𝑐, 𝑝𝑣 are defined as: 

                 𝑛𝑐 = 𝑁𝑐 exp (
𝐸𝑇−𝐸𝑐

𝑘𝐵𝑇
) ,           (7) 

       𝑝𝑣 = 𝑁𝑣 exp (
𝐸𝑣−𝐸𝑇

𝑘𝐵𝑇
)                           (8) 
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where, 𝑁𝑐, and 𝑁𝑣 are the effective density of states (DOS) of conduction and valence bands, 

respectively. 𝐸𝑇 , 𝐸𝑐  and  𝐸𝑣 are the energy levels for the traps, conduction band and valence band, 

respectively. 𝑘𝐵 is the Boltzmann constant, and T is the absolute temperature. For our simulation 

model, trap states are introduced below the conduction maximum to study their impact on the 

device performance. All the simulations are done at T=300 K. To obtain a reasonable 

parametrization, we chose material parameters of the well-studied methylammonium lead iodide 

perovskite absorber, as the A-site cation has a negligible impact on the frontier orbitals and defect 

energy levels. The parameters used for the drift-diffusion simulation are summarized in Table S1. 
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Table S3. Simulation parameters used for drift-diffusion simulations. 

Parameter Value Reference 

Perovskite thickness 300 nm -- 

Perovskite bandgap 1.55 eV [12] 

Perovskite valence band edge -5.43 eV [12] 

Electron and hole mobility 5 cm2V-1s-1 [13] 

Perovskite relative permittivity 24.1 [14] 

Electron mobility in TiO2 0.02 cm2V-1s-1 [15] 

TiO2 HOMO -7.2 eV [15] 

TiO2 bandgap 3.2 eV [15] 

TiO2 relative permittivity 85 [19] 

Hole mobility SpiroOMeTAD 0.01 cm2V-1s-1 [16] 

SpiroOMeTAD HOMO -5.22 eV [17] 

SpiroOMeTAD bandgap 3.17 eV [17] 

SpiroOMeTAD relative permittivity 3 [18] 

Doping SpiroOMeTAD 4.8 × 1017 cm-3 [22] 

Cathode fermi level -5.2 eV [21] 

Anode fermi level -4.05 eV fit 

Grain Boundary trap density 1014 – 1017 cm-3 -- 

Interface trap density 2 × 1015  cm-3 fit 
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Capture cross section electrons (σn) 2 × 10−14  cm2 [23] 

Capture cross section holes (σp) 2 × 10−14  cm2 [23] 

Direct recombination rate 5 × 10−11 cm-3 s-1 (20) 

Maximum generation rate 1.2 × 1022 cm-3 -- 

 

The J-V characteristics of the cell are calculated at different conduction band energy and trap 

energy levels in the grain boundary regions. To account for the effects of interface traps, the 

interface trap density is fixed at 2 × 1015 cm−3, while the trap density at the grain boundary 

regions is varied between 1 × 1014 and 1 × 1017 cm−3. The combined results show a deteriorated 

device performance for increasing trap density and trap energy as shown in Figures S18 to S21. 
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Figure S20.  Calculated J-V characteristics for different conduction band energy shift within grain 

boundary regions. The trap density at the GB region is considered to be (a) 0 cm−3,  (b) 

1 × 1014 cm−3, (c) 5 × 1014 cm−3 , and  (d) 1 × 1015 cm−3.  The trap energy is considered to be 

the same as conduction band minimum, i.e. 𝐸𝑡 = 0.  
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Figure S21.  Calculated J-V characteristics for various trap energies (below the perovskite 

conduction band edge) at the grain boundaries.  The grain boundary conduction band energy is 

considered to be 100 meV below the conduction band minima of the bulk perovskite, i.e., ∆𝐸𝑐 =

100 meV. 
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Figure S22.  Calculated J-V characteristics for various trap energies (below the perovskite 

conduction band edge) at the grain boundaries. The grain boundary conduction band energy is 

considered to be 200 meV below the conduction band minima of the bulk perovskite. 

 



 

 S26 

 

Figure S23.  Calculated J-V characteristics for various trap energies, with reference to the 

perovskite conduction band edge, at the grain boundaries.  The grain boundary conduction band 

energy is assumed to be 300 meV below the conduction band minima of the bulk perovskite. 
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