Supporting Information

Breaking scaling relations in nitric oxide reduction by surface functionalization on MXenes

Shihui Zhao¹, Ying Li¹, Zhonglu Guo^{1,*}, Chengchun Tang¹, Baisheng Sa², Naihua Miao³, Jian Zhou³, Zhimei Sun^{3,*}

¹*Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China*

²Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China

³School of Materials Science and Engineering, Beihang University, Beijing 100191, China

*Correspondence and requests for materials should be addressed to Z. L. Guo or Z. M. Sun: zlguo@hebut.edu.cn, zmsun@buaa.edu.c

Fig. S1 Partial density of states (PDOS) of the interaction between Ti-3d and NO-2p orbitals on NO absorbed functionalized Ti_2CT_2 MXenes (*T*=O, F, Cl, Br, Se, Te, NH, OH). The Fermi level is set to be 0 eV.

Fig. S2 N-O bond length (Å) for NO adsorbed on bare Ti_2C MXene and functionalized Ti_2CT_2 MXenes. The orange dashed line represents N-O bond length of free NO gas molecule.

Fig. S3 The optimized configurations of all NORR intermediates on Ti_2CS_2 MXenes.

Fig. S4 The optimized configurations of all NORR intermediates on Ti_2CO_2 MXenes.

Fig. S5 The optimized configurations of all NORR intermediates on functionalized Ti_2CT_2 MXenes.

Fig. S6 NORR free energy diagrams of the considered pathways on Ti_2CO_2 MXene. The applied potential is zero.

Fig. S7 NORR free energy diagrams of the considered pathways on Ti_2CF_2 MXene. The applied potential is zero.

Fig. S8 NORR free energy diagrams of the considered pathways on Ti_2CCl_2 MXene. The applied potential is zero.

Fig. S9 NORR free energy diagrams of the considered pathways on Ti_2CBr_2 MXene. The applied potential is zero.

Fig. S10 NORR free energy diagrams of the considered pathways on Ti_2CSe_2 MXene. The applied potential is zero.

Fig. S11 NORR free energy diagrams of the considered pathways on Ti_2CTe_2 MXene. The applied potential is zero

Fig. S12 NORR free energy diagrams of the considered pathways on $Ti_2C(NH)_2$ MXene. The applied potential is zero.

Fig. S13 NORR free energy diagrams of the considered pathways on $Ti_2C(OH)_2$ MXene. The applied potential is zero.

Fig. S14 The optimized configurations of all NORR intermediates on Ti_2CS_2 MXene with solvent effect.

Fig. S15 NORR free energy diagrams of the considered pathways on Ti_2CS_2 MXene with solvent effect. The applied potential is zero.

Fig. S16 Linear scaling relations between the adsorption energies of involved intermediates of the most favorable pathway and the adsorption energy of NO (ΔG_{*NO}).

Fig. S17 Adsorption energies of *NO (ΔG_{*NO}) and *H (ΔG_{*H}) on bare Ti₂C and functionalized Ti₂CT₂ MXenes.

Fig. S18 AIMD simulation of Ti_2CF_2 MXene with F vacancies. The inserts illustrate the initial and final (10000 fs) atomic structures shown in the top and side view. The green dotted circles represent the F vacancies.

Fig. S19 AIMD simulation of Ti_2CCl_2 MXene with Cl vacancies. The inserts illustrate the initial and final (10000 fs) atomic structures shown in the top and side view. The orange dotted circles represent the Cl vacancies.

Fig. S20 AIMD simulation of Ti_2CBr_2 MXene with Br vacancies. The inserts illustrate the initial and final (10000 fs) atomic structures shown in the top and side view. The green dotted circles represent the Br vacancies.

Fig. S21 AIMD simulation of Ti_2CSe_2 MXene with Se vacancies. The inserts illustrate the initial and final (10000 fs) atomic structures shown in the top and side view. The orange dotted circles represent the Se vacancies.

Fig. S22 AIMD simulation of Ti_2CTe_2 MXene with Te vacancies. The inserts illustrate the initial and final (10000 fs) atomic structures shown in the top and side view. The green dotted circles represent the Te vacancies.

Fig. S23 AIMD simulation of $Ti_2C(NH)_2$ MXene with NH vacancies. The inserts illustrate the initial and final (10000 fs) atomic structures shown in the top and side view. The green dotted circles represent the NH vacancies.

Fig. S24 AIMD simulation of $Ti_2C(OH)_2$ MXene with OH vacancies. The inserts illustrate the initial and final (10000 fs) atomic structures shown in the top and side view. The green dotted circles represent the OH vacancies.

MXenes	Model 1	Model 2
Ti ₂ CS ₂	-38.10	-39.17
Ti ₂ CO ₂	-43.76	-45.57
Ti ₂ CF ₂	-39.55	-40.08
Ti ₂ CCl ₂	-35.81	-36.29
Ti ₂ CBr ₂	-34.21	-34.60
Ti ₂ CSe ₂	-36.65	-37.47
Ti ₂ CTe ₂	-35.06	-35.52
Ti ₂ C(NH) ₂	/	-54.15
Ti ₂ C(OH) ₂	/	-52.15

Table S1. Comparison of adsorption energy of Mode 1 and Mode 2 for functionalized Ti_2CT_2 MXenes unit cells (units in eV). "/" represents structural instability.

MXenes	ΔG(*NO - *NOH)	ΔG(*NO - *HNO)
Ti ₂ CS ₂	-0.69	-0.05
Ti ₂ CO ₂	-0.66	-0.43
Ti_2CF_2	-0.44	-0.32
Ti ₂ CCl ₂	-0.45	0.12
Ti ₂ CBr ₂	-0.42	0.47
Ti ₂ CSe ₂	-0.59	0.32
Ti ₂ CTe ₂	-0.24	0.59
Ti ₂ C(NH) ₂	-0.25	0.03
Ti ₂ C(OH) ₂	0.38	0.27

Table S2. Comparison of the free energy change of ΔG (*NO - *NOH) and ΔG (*NO - *HNO) on functionalized Ti₂CT₂ MXenes (ΔG , units in eV)

Table S3. Comparison of the adsorption energy of ΔG_{*NOH} and ΔG_{*NHO} on functionalized Ti₂CT₂ MXenes (ΔG , units in eV)

MXenes	ΔG_{*NOH}	$\Delta G_{*_{NHO}}$
Ti_2CS_2	-3.73	-1.30
Ti ₂ CO ₂	-4.13	-2.11
Ti ₂ CF ₂	-4.94	-3.03
Ti ₂ CCl ₂	-4.51	-2.15
Ti ₂ CBr ₂	-4.45	-1.77
Ti ₂ CSe ₂	-4.10	-1.40

Ti ₂ CTe ₂	-4.14	-1.52
Ti ₂ C(NH) ₂	-3.75	-1.68
Ti ₂ C(OH) ₂	-5.07	-3.40

Table S4. Computed Gibbs free energy of each elementary step on the Ti_2CS_2 MXene without and with solvation effects. (ΔG , units in eV)

TLCS	ΔG (without solvation	$\Delta \mathbf{G}$ (with solvation
$\Pi_2 CS_2$	effects)	effects)
*+NO \rightarrow *NO	-1.28	-0.72
*NO+H++e- \rightarrow *NOH	-0.69	-0.81
*NO+H++e- \rightarrow *HNO	-0.05	-0.16
*NOH+H++e ⁻ \rightarrow *N+H ₂ O	-1.02	-1.25
$*N+H^++e^- \rightarrow *NH$	-1.29	-1.39
*NH+ H++e- \rightarrow *NH ₂	-0.21	-0.26
$*NH_2+H^++e^- \rightarrow *NH_3$	0.08	0.01
*NOH+H++e- \rightarrow *NHOH	0.49	0.36
*HNO+H++e- \rightarrow *NHOH	-0.15	-0.29
*HNO+H++ $e^- \rightarrow *H_2NO$	-1.62	-1.71
*NHOH+H++e- \rightarrow *NH ₂ OH	-0.07	-0.39
$^{*}\mathrm{H}_{2}\mathrm{NO}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{NH}_{2}\mathrm{OH}$	1.40	1.03
$*O+H^++e^- \rightarrow *OH$	-0.50	-0.71
*OH+H++e- \rightarrow *H ₂ O	1.17	1.00

Ti ₂ CO ₂	ΔG (without solvation	ΔG (with solvation
	effects)	effects)
*+NO \rightarrow *NO	-1.71	-1.00
*NO+H++e- \rightarrow *NOH	-0.67	-0.84
*NOH+H++e- \rightarrow *N+H ₂ O	-1.34	-1.49
$*N+H^++e^- \rightarrow *NH$	-1.05	-1.16
*NH+ H++e- \rightarrow *NH ₂	0.06	-0.01
$*NH_2+H^++e^- \rightarrow *NH_3$	0.14	-0.10

Table S5. Computed Gibbs free energy of the optimal pathway for ammonia formation on the Ti_2CO_2 MXene without and with solvation effects. (ΔG , units in eV)

Table S6. Computed Gibbs free energy of the optimal pathway for ammonia formation on the Ti_2CF_2 MXene without and with solvation effects. (ΔG , units in eV)

T: CE	ΔG (without solvation	ΔG (with solvation
	effects)	effects)
*+NO \rightarrow *NO	-2.75	-2.19
*NO+H++e ⁻ \rightarrow *NOH	-0.44	-0.49
*NOH+H++e- \rightarrow *N+H ₂ O	-1.67	-1.88
$*N+H^++e^- \rightarrow *NH$	-0.71	-0.73
*NH+ H++ $e^- \rightarrow *NH_2$	0.36	0.26
$^{*}\mathrm{NH}_{2}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{NH}_{3}$	0.87	0.60

Ti ₂ CCl ₂	ΔG (without solvation	ΔG (with solvation
	effects)	effects)
*+NO \rightarrow *NO	-2.30	-2.14
*NO+H++e ⁻ \rightarrow *NOH	-0.45	-0.49
*NOH+H++e- \rightarrow *N+H ₂ O	-1.40	-1.66
$*N+H^++e^- \rightarrow *NH$	-0.89	-0.92
*NH+ H++e- \rightarrow *NH ₂	0.35	0.30
*NH ₂ + H ⁺ +e ⁻ \rightarrow *NH ₃	0.66	0.56

Table S7. Computed Gibbs free energy of the optimal pathway for ammonia formation on the Ti_2CCl_2 MXene without and with solvation effects. (ΔG , units in eV)

Table S8. Computed Gibbs free energy of the optimal pathway for ammonia formation on the Ti_2CBr_2 MXene without and with solvation effects. (ΔG , units in eV)

T: CD.	ΔG (without solvation	ΔG (with solvation
$\Pi_2 CBr_2$	effects)	effects)
*+NO \rightarrow *NO	-2.27	-2.29
*NO+H++e- \rightarrow *NOH	-0.42	-0.49
*NOH+H++e- \rightarrow *N+H ₂ O	-1.37	-1.67
$*N+H^++e^- \rightarrow *NH$	-0.89	-0.89
*NH+ H++e- \rightarrow *NH ₂	0.42	0.39
$^*\mathrm{NH}_2\!\!+\mathrm{H}^+\!\!+\!e^-\!\to ^*\mathrm{NH}_3$	0.72	0.69

T: CS-	ΔG (without solvation	ΔG (with solvation
11 ₂ CSe ₂	effects)	effects)
*+NO \rightarrow *NO	-1.75	-1.53
*NO+H++e ⁻ \rightarrow *NOH	-0.59	-0.64
*NOH+H++e- \rightarrow *N+H ₂ O	-1.45	-1.73
$*N+H^++e^- \rightarrow *NH$	-0.90	-0.96
*NH+ H++e- \rightarrow *NH ₂	0.23	0.20
$*NH_2+H^++e^- \rightarrow *NH_3$	0.44	0.39

Table S9. Computed Gibbs free energy of the optimal pathway for ammonia formation on the Ti_2CSe_2 MXene without and with solvation effects. (ΔG , units in eV)

Table S10. Computed Gibbs free energy of the optimal pathway for ammonia formation on the Ti_2CTe_2 MXene without and with solvation effects. (ΔG , units in eV)

Ti ₂ CTe ₂	ΔG (without solvation	ΔG (with solvation
	effects)	effects)
*+NO \rightarrow *NO	-2.14	-2.22
*NO+H++e- \rightarrow *NOH	-0.24	-0.23
*NOH+H++ $e^- \rightarrow *N+H_2O$	-1.67	-1.99
*N+ H++e \rightarrow *NH	-0.66	-0.68
*NH+ H++e- \rightarrow *NH ₂	0.62	0.61
$*NH_2+H^++e^- \rightarrow *NH_3$	0.87	0.85

т: саш)	ΔG (without solvation	ΔG (with solvation
$\Pi_2 \mathbb{C}(\mathbb{N}\Pi)_2$	effects)	effects)
*+NO \rightarrow *NO	-1.74	-1.83
*NO+H++e ⁻ \rightarrow *NOH	-0.25	-0.23
*NOH+H++e- \rightarrow *N+H ₂ O	-1.27	-1.61
$*N+H^++e^- \rightarrow *NH$	-0.91	-0.83
*NH+ H++e- \rightarrow *NH ₂	-0.19	-0.20
*NH ₂ + H ⁺ +e ⁻ \rightarrow *NH ₃	0.19	0.16

Table S11. Computed Gibbs free energy of the optimal pathway for ammonia formation on the $Ti_2C(NH)_2$ MXene without and with solvation effects. (ΔG , units in eV)

Table S12. Computed Gibbs free energy of the optimal pathway for ammonia formation on the $Ti_2C(OH)_2$ MXene without and with solvation effects. (ΔG , units in eV)

Ti ₂ C(OH) ₂	ΔG (without solvation	ΔG (with solvation
	effects)	effects)
*+NO \rightarrow *NO	-3.70	-3.95
*NO+H++e ⁻ \rightarrow *HNO	0.27	0.40
*HNO+H++e- \rightarrow *NH-H ₂ O	-2.71	-2.67
*NH-H ₂ O \rightarrow *NH+H ₂ O(g)	0.33	-0.004
*NH+ H++e- \rightarrow *NH ₂	0.50	0.57

 Table S13. Bader charge variation of three "active" Ti atoms upon NO

adsorption

MXenes	charge transfer (e ⁻)
bare Ti ₂ C	0.911
Ti_2CS_2	0.102
Ti ₂ CO ₂	0.480
Ti ₂ CF ₂	0.490
Ti ₂ CCl ₂	0.280
Ti ₂ CBr ₂	0.309
Ti ₂ CSe ₂	0.208
Ti ₂ CTe ₂	0.311
Ti ₂ C(NH) ₂	0.205
Ti ₂ C(OH) ₂	0.541