Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

J. Mater. Chem. A

Supporting Information

Li⁺-intercalated carbon cloth for anode-free Li-ion batteries with unprecedented cyclability

Amol Bhairuba Ikhe^a, Woon Bae Park^{a,*}, Su Cheol Han^a, Jung Yong Seo^a, Suyeon Han^a, Kee-Sun Sohn^{b,*}, Myoungho Pyo^{a,*}

^aDepartment of Advanced Components and Materials Engineering, Sunchon national University, Chonnam 57922, Republic of Korea

^bFaculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

* Corresponding authors.

E-mail addresses: wbpark@scnu.ac.kr (W. B. Park), kssohn@sejong.ac.kr (K.-S. Sohn), mho@sunchon.ac.kr (M. Pyo)

	Strategies	Full cell	Remark	Ref
Extra Li	Replenishable extra Li metal	Cu/Li LFP	Quite slow discharge to reactivate LFP by using extra Li	S1
	Li-rich $Li_2[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ cathode	Cu Li _{1.37} NMC811	Convert to NMC811 after 1 st charge	S2
	Li ₂ O as a sacrificing agent on NMC811	Cu Li ₂ O/NMC811	Convert to Li _{2-x} O after releasing extra Li ⁺ during 1 st charge	S3
	CVD-grown graphene	Cu/graphene LFP	61% Q retention after 100 cycles	S4
	Al ₂ O ₃ /polyacrylonitrile composite layer	Cu/AOP NMC111	30% Q retention for 82 cycles	S5
	Spin-coated GO	Cu/GO NMC111	44% Q retention for 50 cycles	S6
	PEO	Cu/PEO LFP	30% Q retention after 200 cycles	S7
	Ag@PDA/GO	Cu/Ag@PDA/GO∥ NMC111	55.7% Q retention after 60 cycles	S8
	Garnet:PVdF:LiClO ₄	Cu/Garnet/PVdF/LiClO ₄ NMC111	59% Q retention after 30 cycles	S9
Surface	Spin coated LLZTO/PEO-CPE	Cu LLZTO/PEO-CPE NMC	41.2% Q retention after 65 cycles at 55 °C	S10
modified Cu	Sn primer layer	Cu/Sn NCA	Convert to Sn-Li alloy during initial plating, then Li P/S cycles on Sn-Li	S11
	Benzotriazole coated Cu	BTA-Cu LFP	73% Q retention after 50 cycles	S12
	β -PVDF on Cu with thermal- electrochemical activation	Cu/ <i>β</i> -PVDF∥ NMC111	61.4% Q retention after 30 cycles	S13
	Ag@P-APF	Cu/Ag@P-APF NMC	40% Q retention after 70 cycles	S14
	LiF@PVDF dielectric layer	Cu/LiF@PVDF LFP	<60% Q retention after 40 cycles	S15
	Laser-induced SiOx layer	Cu/LI-SiOx LFP	45.6% Q retention after 100 cycles	S16
	Dielectric blocks of BaTiO₃ on Cu	Cu/BTO NMC	~83% Q retention after 50 cycles	S17
	Ultrathin Zn-NC-CNT interfacial layer on Cu	Cu/Zn-NC-CNT NMC811	~85% Q retention after 50 cycles	S18
	4M LiFSI in DME	Cu LFP	54% Q retention after 100 cycles	S19
	1M LiPF ₆ in FEC/TTE/EMC	Cu NMC111	40% Q retention for 80 cycles	S20
Electro- lyte	Mixed salt (2M LiFSI + 1M LiTFSI) in DME/DOL	Cu LFP	50% Q retention after 50 cycles	S21
	2M LiPF ₆ in EC/DEC/FEC	Cu NMC111	40% Q retention for 50 cycles	S22
	3M LiFSI in DOL/DME, plating & then 24h resting	Cu LFP	64% Q retention after 50 cycles	S23
	2 wt% KPF ₆ & 2 vol% TMSP in 1M LiPF ₆ /EC:DEC	Cu NMC111	48% Q retention after 20 cycles	S24
	KNO ₃ additive in 1M LiPF ₆ /EC:DMC	Cu NMC111	40% Q retention after 50 cycles	S25
	1M LiDFOB+0.05M LiPF ₆ in FEC:TTE:DEC	Cu NMC532	45% Q retention after 35 cycles	S26
	1M LiPF ₆ in FEC:TTE (3:7)	Cu NMC111	50% Q retention after 65 cycles	S27
	2M LiFSI+2MLiNO₃ in DME	Cu NMC	47.3% Q retention after 100 cycles	S28
		Cu LFP	52.7% Q retention after 100	

Table S1. Summary on the strategies and performances for AFLIBs (LIBs only).

			cycles	
-	1M LiTFSI in TMS+FEC(8:2)	Cu NMC811	<30% Q retention after 25 cycles	S29
	$0.2M \text{ LiPF}_6+3.8M \text{ LiTFSI }+0.2wt\%$ LiNO ₃ in EC/DEC/EMC/TEP (1.5:2.5:1:5)	Cu LFP	54.8% Q retention after 50 cycles	S30
	4.6M LiFSI+2.3M LiTFSI in DME	Cu NMC622	~55% Q retention after 25 cycles	S31
	VEC additive in 1M LiPF ₆ in EC/DMC	Cu NMC811	<15% Q retention after 50 cycles	S32
	1.5M LiPF ₆ +1wt% TMSB in FEC/EMC/DMC (34.6:57.2:8.2)	Cu NMC811	<20% Q retention after 30 cycles	S33
	1M LiPF ₆ in EA/FEC/TTE/EMC (2:1:5:2)	Cu NMC111	<25% Q retention after 60 cycles	S34
	1M LiFSI in Fluorinated 1,4- dimethoxylbutane	Cu NMC	80% Q retention after 100 cycles	S35
	Triethylmethylphosphonium bis(fluorosulfonyl)imide [P ₁₂₂₂]	Cu LFP	47.3% Q retention after 100 cycles	S36
	[FSI] (Boron Molecular) ionic liquid and LiFSI (1:1 mol ratio)	Cu sc-NMC622	53% Q retention after 100 cycles	
	$1M \operatorname{LiPF_6}$ in FEC:TFEC under 1200 kPa	Cu NMC111		S37
P & Temp control	0.6M LiDFOB:0.6M LiBF ₄ /FEC:DEC under pressure	Cu NMC111	80% Q retention after 90 cycles	S38
	Hot-formation with pressure	Cu NMC532	80% Q retention after 195 cycles	S39
Other substrates	Defective carbon layer coated carbon paper	d-CP NMC811	56% Q retention after 100 cycles	S40
	Mesoporous silica thin film on the stainless steel foil	SS/MSTF LFP	~45% Q retention after 100 cycles	S41

References

- S1 H. Liu, J. Holoubek, H. Zhou, Z. Wu, X. Xing, S. Yu, G. M. Veith, Y. Li, Y. Choi and P. Liu, *Energy Storage Mater*. 2021, **36**, 251-256.
- S2 L. Lin, K. Qin, Q. Zhang, L. Gu, L. Suo, Y.-S. Hu, H. Li, X. Huang and L. Chen, *Angew. Chem. Int. Ed.* 2021, 60, 8289-8296.
- S3 Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li and H. Zhou, Nat. Energy 2021, 6, 653-662.
- S4 A. A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen and B.-J. Hwang, *Nanoscale* 2019, **11**, 2710-2720.
- S5 A. A. Sahalie, Z. T. Wondimkun, W.-N. Su, M. A. Weret, F. W. Fenta, G. B. Berhe, C.-J. Huang, Y.-C. Hsu and B. J. Hwang, *ACS Appl. Energy Mater*. 2020, **3**, 7666-7679.
- S6 Z. T. Wondimkun, T. T. Beyene, M. A. Weret, N. A. Shahilie, C.-J. Huang, B. Thirmalaraj, B.
 A. Jote, D. Wang, W.-N. Su, C.-H. Wang, G. Brunklaus, M. Winter and B.-J. Hwang, J. Power Sources 2020, 450, 227589.

- S7 A. A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su and B.-J. Hwang, *Nanoscale* 2018, **10**, 6125-6138.
- S8 Z. T. Wondimkun, W. A. Tegegne, J. S.-Kai, C.-J. Huang, N. A. Sahilie, M. A. Weret, J.-Y. Hsu,
 P.-L. Hsieh, Y.-S. Huang, S.-H. Wu, W.-N. Su and B. J. Hwang, *Energy Storage Mater*. 2021,
 35, 334-344.
- S9 L. H. Abrha, T. A. Zegeye, T. T. Hagos, H. Sutiono, T. M. Hagos, G. B. Berhe, C.-J. Huang, S.-K. Jiang, W.-N. Su, Y.-W. Yang and B.-J. Hwang, *Electrochim. Acta* 2019, **325**, 134825.
- S10 T. A. Zegeye, W.-N. Su, F. W. Fenta, T. S. Zeleke, S.-K. Jiang and B. J. Hwang, *Energy Mater*.
 2020, 3, 11713-11723.
- S11 S. S. Zhang, X. Fan and C. Wang, *Electrochim. Acta* 2017, 258, 1201-1207.
- S12 T. Kang, J. Zhao, F. Guo, L. Zheng, Y. Mao, C. Wang, Y. Zhao, J. Zhu, Y. Qiu, Y. Shen and L.
 Chen, ACS Appl. Mater. Interfaces 2020, 12, 8168-8175.
- S13 L. H. Abrha, Y. Nikodimos, H. H. Weldeyohannes, T. T. Hagos, D.-Y. Wang, C.-J. Huang, S.-K. Jiang, S.-H. Wu, W.-N. Su, M.-C. Tsai and B. J. Hwang, ACS Appl. Mater. Interfaces 2021, 4, 3240-3248.
- S14 N. T. Temesgen, W. A. Tegegne, K. N. Shitaw, F. W. Fenta, Y. Nikodimos, B. W. Taklu, S.-K. Jiang, C.-J. Huang, S.-H. Wu, W.-N. Su and B.-J. Hwang, J. Taiwan Inst. Chem. Eng. 2021, 128, 87-97.
- S15 O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon, T.-H. Hwang, Y.-S. Kang, J. Park, N. Meethong and K. Kang, *ACS Energy Lett*. 2021, **6**, 4416-4425.
- S16 W. Chen, R. V. Salvatierra, M. Ren, J. Chen, M. G. Stanford and J. M. Tour, *Adv. Mater*.
 2020, **31**, 2002850.
- S17 C. Wang, M. Liu, M. Thijs, F. G. B. Ooms, S. Ganapathy and M. Wagemaker, Nat. Commun.2021, 12, 6536.
- S18 T. Zhao, S. Li, Y. Wang, H. Wang, M. Zhang, X. Tang, F. Liu, D. Du, H. Zheng and Y. Ma, J. Mater. Chem. A 2021, 9, 21281-21290.
- S19 J. Qian, B. D. Adams, J. Zheng, W. Xu, W. A. Henderson, J. Wang, M. E. Bowden, S. Xu, J. Hu and J.-G. Zhang, *Adv. Funct. Mater.* 2016, *26*, 7094-7102.
- S20 T. M. Hagos, T. T. Hagos, H. K. Bazabh, G. B. Berhe, L. H. Abrha, S.-F. Chiu, C.-J. Huang, W. N. Su and H. Dai, ACS Appl. Energy Mater. 2020, 3, 10722-10733.
- S21 T. T. Beyene, H. K. Bezabh, M. A. Weret, T. M. Hagos, C.-J. Huang, C.-H. Wang, W.-N. Su,
 H. Dai and B.-J. Hwang, *J. Electrochem. Soc.* 2019, **166**, A1501-A1509.

- S22 T. M. Hagos, B. Thirumalraj, C.-J. Huang, L. H. Abrha, T. M. Hagos, G. B. Berhe, H. K. Bezabh,
 J. Cherng, S.-F. Chiu, W.-N. Su and B.-J. Hwang, ACS Appl. Energy Mater. 2019, 11, 9955-9963.
- S23 T. T. Beyene, B. A. Jote, Z. T. Wondimkun, B. W. Olbassa, C.-J. Huang, B. Thirumalraj, C.-H.
 Wang, W.-N. Su, H. Dai and B.-J. Hwang, ACS Appl. Energy Mater. 2019, 11, 31962-31971.
- S24 T. M. Hagos, G. B. Berhe, T. T. Hagos, H. K. Bezabh, L. H. Abrha, T. T. Beyene, C.-J. Huang,
 Y.-W. Yang, W.-N. Su, H. Dai and B.-J. Hwang, *Electrochim. Acta* 2019, **316**, 52-59.
- S25 N. A. Sahalie, A. A. Assegie, W.-N. Su, Z. T. Wondimkun, B. A. Jote, B. Thirumalraj, C.-J.
 Huang, Y.-W. Yang and B.-J. Hwang, J. Power Sources 2019, 437, 226912.
- S26 B. A. Jote, T. T. Beyene, N. A. Sahalie, M. A. Weret, B. W. Olbassa, Z. T. Wondimkun, G. B.Berhe, C.-J. Huang, W.-N. Su and B. J. Hwang, J. Power Sources 2020, 461, 228102.
- S27 T. T. Hagos, W.-N. Su, C.-J. Huang, B. Thirumalraj, S.-F. Chiu, L. H. Abrha, T. M. Hagos, H. K. Bezabh, G. B. Berhe, W. A. Tegegne, J.-Y. Cherng, Y.-W. Yang and B.-J. Hwang, *J. Power Sources* 2020, 461, 228053.
- S28 D. W. Kang, J. Moon, H.-Y. Choi, H.-C. Shin and B. G. Kim, J. Power Sources 2021, 490, 229504.
- S29 L. Dong, Y. Liu, D. Chen, Y. Han, Y. Ji, J. Liu, B. Yuan, Y. Dong, Q. Li, S. Zhou, S. Zhong, Y. Liang, M. Yang, C. Yang and W. He, *Energy Storage Mater*. 2022, 44, 527-536.
- S30 H. Choi, Y. Bae, S.-M. lee, Y.-C. Ha, H.-C. Shin and B. G. Kim, J. Electrochem. Sci. Technol. 2022, 13, 78-89.
- S31 J. Alvarado, M. A. Schroeder, T. P. Pollard, X. Wang, J. Z. Lee, M. Zhang, T. Wynn, M. Ding,
 O. Borodin, Y. S. Meng and K. Xu, *Energy Environ. Sci.* 2019, **12**, 780-794.
- S32 S. Fang, Y. Zhang and X. Liu, *Chem. Eng. J.* 2021, **426**, 121880.
- S33 K. Huang, S. Bi, B. Kurt, C. Xu, L. Wu, Z. Li, G. Feng and X. Zhang, *Angew. Chem. Int. Ed.*2021, 60, 19232-19240.
- S34 T. M. Hagos, H. K. Bezabh, H. G. Redda, E. A. Moges, W.-H. Huang, C.-J. Huang, W.-N. Su,
 H. Dai and B. J. Hwang, *J. Power Sources* 2021, **512**, 220388.
- S35 Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang,
 S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui
 and Z. Bao, *Nat. Energy* 2020, 5, 526-533.
- S36 T. Pathirana, R. Kerr, M. Forsyth and P. C. Howlett, *Sustain. Energy Fuels* 2021, 5, 4141-4152.

- S37 A. J. Louli, M. Genovese, R. Weber, S. G. Hames, E. R. Logan and J. R. Dahn, J. Electrochem.
 Soc. 2019, 166, A1291-A1299.
- S38 R. Weber, M. Genovese, S. Hames, C. Martin, I. G. Hill and J. R. Dahn, *Nat. Energy* 2019, 4, 683-689.
- S39 M. Genovese, A. J. Louli, R. Weber, C. Martin, T. Taskovic and J. R. Dahn, J. Electrochem. Soc. 2019, 166, A3342-A3347.
- S40 H. Kwon, J.-H. Lee, Y. Roh, J. Baek, D. J. Shin, J. K. Yoon, H. J. Ha, J. Y. Kim and H.-T. Kim, *Nat. Commun.* 2021, **12**, 5537.
- S41 C.-A. Lo, C.-C. Chang, Y.-W. Tsai, S.-K. Jiang, B. J. Hwang, C.-Y. Mou and H.-L. Wu, ACS Appl.
 Energy Mater. 2021, 4, 5132-5142.

Table S2. List of abbreviations used in the manuscripts (excluding commonly used abbreviations. e.g. nm, μ m, etc.)

Abbreviations	Full name	
AFLIBs	Anode-free Li-ion batteries	
CC	Carbon cloth	
СР	Carbon paper	
CF	Carbon foil	
C/D	Charge/discharge	
ED	Energy density	
LIBs	Li-ion batteries	
LMBs	Li-metal batteries	
SEI	Solid-electrolyte-interface	
P/S	Plating/stripping	
wt%	Weight percentage	
LiPF ₆	Lithium hexafluorophosphate	
EC/DMC	Ethylene carbonate/dimethyl carbonate	
TEMPO	2,2,6,6-tetramethylpiperidine-1-oxyl	
LFP	LiFePO ₄	
FESEM	Field emission scanning electron microscopy	
EDX	Energy dispersive X-ray spectroscopy	
AFM	Atomic force microscopy	
FETEM	Field-emission transmission electron microscopy	
SEI/CC ^O	SEI formed CC in the oxidized state	
SEI/CC ^R	SEI formed CC in the reduced state	
XRD	X-ray diffraction	
XPS	X-ray photoelectron spectroscopy	
EIS	Electrochemical impedance spectra	
OCV	Open circuit voltage	
CVs	Cyclic voltammograms	
RMS	Root mean square	
CE	Coulombic efficiency	
LED	Light Emitting diodes	

Comparison of carbon substrates used for this study

CF is a compressed graphite sheet with a thickness of 220 μ m, obtained from Samjungcng, Korea (samjungcng.co.kr). It is made by homogeneously compressing the natural graphite flakes.

CP with a thickness of 190 μm (Toray TGP-H-120) was purchased from FuelCellsEtc. CP is made of irregularly interwoven carbon fibers (polyacrylonitrile-based), which are firmly connected by carbon films.

Plain CC with a thickness of 356 μ m (1071) was purchased from FuelCellsEtc. CC1071 has an interwoven structure, and usual paper production techniques are used for manufacture.

Prior to use, all electrodes were cleaned by brief

flame-burning (ca. 10 s).

Fig. S1 FESEM images for CF, CP, and CC. Density (ρ) is from the manufacturers and BET σ (Brunauer, Emmett, and Teller surface area) was calculated from N₂ adsorption (Belsorpmax, MicrotracBEL, Corp.).

FESEM images show that, while CF has no characteristic surface features, CC has an aligned carbon fibers (10 μ m in diameter). CP is composed of randomly oriented carbon fibers (ca. 10 μ m in diameter) integrated with graphitic binders.

Determination of electrochemically active surface areas of CF, CP, and CC

Electrochemically active areas were determined from cyclic voltammograms of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl, 20 mM) in 1.0 M LiPF₆/EC:DMC. **Fig. S2** shows quasi-reversible voltammograms of TEMPO at 0.5 mV·s⁻¹. The Randles-Sevcik equation was applied to calculate the electrode area. The anodic peak current and the diffusion coefficient of 9.2 x 10^{-6} cm²·s⁻¹ (*Energy Adv.* 2022, **1**, 21.) were adopted. The smallest area of 1.04 cm² was obtained for CC, relative to 1.69 and 1.50 cm² for CF and CP, respectively, in CR2032 coin-type cells.

Note that, though CC has a cylindrical shape, the Randles-Sevcik equation, which is based on the linear diffusion, can be applied for the determination of an electrode area. The radial diffusion becomes important either when the length of cylinder is short compared to the radius (*Phys. Chem. Chem. Phys.* 2018, **20**, 148.) or when the scan rate is slow (*J. Electroanal. Chem.* 2020, **859**, 113865.), both of which are not the case in this study.

Fig. S2 Cyclic voltammograms of TEMPO on CF, CP, and CC in coin-type cells. The electrochemically active areas of 1.69, 1.50, and 1.04 cm² for CF, CP, and CC, respectively, were obtained.

Marginal changes in SEI compositions on CC

In contrast to a gradual increase in oxygen and fluorine contents of SEI on CF and CP, the SEI compositions on CC are almost invariant with cycling (0.02 - 3.0 V, 20 mA·g⁻¹) once formed during the 1st cathodic scan (¹R). For example, the fluorine and oxygen contents slightly increase after the 1st anodic scan (from ¹R to ¹O), but the change is negligible considering an error range in EDX. The compositional variation is also marginal after 5 and 10 cycles irrespective of the redox states, which signifies the irreversible formation of the robust SEI on the CC after the 1st cathodic scan (¹R).

Fig. S3 Variation of elemental compositions examined using EDX. Superscript numerals on the abscissa indicate the number of galvanostatic cycles in a cell of CC \parallel Li, and R and O denote the reduced state at 0.02 V and the oxidized state at 3.0 V, respectively.

EDX spectra of SEI-formed CF and CP with cycles

Fig. S4 EDX spectra of CF and CP electrodes subjected to galvanostatic cycles in coin-type cells between 0.02 and 3.0 V. Superscript numerals indicate the number of cycles, and O denotes the oxidized state at 3.0 V.

EDX spectra of SEI/CC^R and SEI/CC^O with cycles

Fig. S5 EDX spectra of CC electrodes subjected to galvanostatic cycles in coin-type cells between 0.02 and 3.0 V. Superscript numerals indicate the number of cycles, and R and O denote the reduced state at 0.02 V and the oxidized state at 3.0 V, respectively.

FETEM image also supports that SEI is immediately formed on CC

Fig. S6 FETEM image of SEI/CC^R after a single scan to 0.02 V. The thickness and uniformity of SEI are identical to that in Figure 2B, indicating that the SEI formation on CC is complete after a single cathodic scan to 0.02 V.

FESEM image of stripped CC reveals the perfect reversibility for Li P/S

Fig. S7 FESEM images of fully stripped CF, CP, and CC. In contrast to CF and CP, CC shows no Li remaining, indicating the perfect reversibility for Li P/S processes.

Negligible Li⁺ intercalation at voltages lower than 0.02 V

Fig. S8 Evolution of XRD patterns of CC during a scan toward the negative voltages. It is obvious that the d_{002} peaks move toward lower 2 θ angles with Li⁺ intercalation, but become stationary from the voltage lower than 0.02 V, which implies that no more Li⁺ ions are intercalated into SEI/CC^R.

XPS reveals continuous increase of oxygen functionalities with ozone irradiation

Fig. S9 Survey XPS spectra of CC after ozone irradiation to introduce oxygen functional groups to the CC surface.

SEI/CC^R can be handled in dry air for ca. 1 h with no serious degradation

Fig. S10 Change of XRD patterns of SEI/CC^R when stored in the dry-room condition (air, dew point = - 40 °C) during 1, 2, 3, and 12 h. From 2h-exposure, the d_{002} peak begins to shift to the positive 2 θ direction along with the appearance of Li₂O₂.

Fig. S11 C/D profiles of AFLIBs consisting of SEI/CC^R exposed to dry air and LFP at 1.0 C.