Electronic Supplementary Information (ESI)

Local Structural Distortions and Reduced Thermal

Conductivity in Ge-Substituted Chalcopyrite

Sahil Tippireddy¹, Feridoon Azough², Vikram¹, Animesh Bhui³, Philip Chater⁴, Demie Kepaptsoglou^{5,6}, Quentin Ramasse^{5,7}, Robert Freer², Ricardo Grau-Crespo¹, Kanishka Biswas³, Paz Vaqueiro¹, and Anthony V. Powell^{1*}

¹Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, United Kingdom.

²Department of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom.

³New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.

⁴Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom.

⁵ SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, United

Kingdom

⁶ Department of Physics, University of York, York YO10 5DD, United Kingdom

⁷ School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United

Kingdom

*Corresponding author: a.v.powell@reading.ac.uk

Figure S1. Rietveld refinement using synchrotron X-ray powder diffraction data ($\lambda = 0.161669 \text{ Å}$) for CuFe_{1-x}Ge_xS₂ ($0 \le x \le 0.1$).

Sample	a/Å	c/Å
CuFeS ₂	5.2909(3)	10.4319(7)
$CuFe_{0.98}Ge_{0.02}S_2$	5.2912(2)	10.4374(6)
$CuFe_{0.96}Ge_{0.04}S_2$	5.2913(2)	10.4529(5)
$CuFe_{0.94}Ge_{0.06}S_2$	5.2918(2)	10.4709(6)
$CuFe_{0.92}Ge_{0.08}S_2$	5.2913(2)	10.4790(6)
$CuFe_{0.9}Ge_{0.1}S_2$	5.2903(3)	10.4911(7)

Table S1. Lattice parameters of CuFe_{1-x}Ge_xS₂ ($0 \le x \le 0.1$) described in the space group $I\overline{4}2d$.

Table S2: Compositions[#] of the chalcopyrite-type phase determined by EDS.

Sample (Ge concentration)	Nominal composition	EDS composition of the main phase*
x = 0	CuFeS ₂	Cu _{1.117(9)} Fe _{1.018(5)} S ₂
<i>x</i> = 0.02	$CuFe_{0.98}Ge_{0.02}S_2$	$Cu_{1.146(5)}Fe_{0.984(5)}Ge_{0.024(3)}S_2$
<i>x</i> = 0.04	$CuFe_{0.96}Ge_{0.04}S_2$	$Cu_{1.146(8)}Fe_{0.971(9)}Ge_{0.042(4)}S_2$
<i>x</i> = 0.06	$CuFe_{0.94}Ge_{0.06}S_2$	$Cu_{1.118(4)}Fe_{0.957(5)}Ge_{0.062(3)}S_2$
<i>x</i> = 0.08	$CuFe_{0.92}Ge_{0.08}S_2$	$Cu_{1.102(2)}Fe_{0.936(9)}Ge_{0.078(3)}S_2$
<i>x</i> = 0.1	$CuFe_{0.9}Ge_{0.1}S_2$	$Cu_{1.098(3)}Fe_{0.912(2)}Ge_{0.094(2)}S_2$

*Normalized to 2 sulfur atoms per formula unit in CuFeS₂.

[#]Due to the overlap of the K_{α} and L_{α} characteristic lines of Cu and Fe, there may be uncertainties in the quantitative at.% determined by EDS.

Figure S2. SEM images of CuFe_{1-x}Ge_xS₂ (x = 0, 0.08 and 0.1) showing the presence of trace amounts of secondary phases. Substituted samples with higher Ge content ($x \ge 0.08$) contain another chalcopyrite-like phase (yellow circles) identified from EDS as Cu_{21.69}Fe_{25.74}Ge_{0.94}S_{51.64} and Cu_{21.91}Fe_{25.46}Ge_{1.83}S_{50.79} in materials with compositions x = 0.08and 0.1, respectively.

Figure S3. SEM-EDS elemental mapping of $CuFe_{0.9}Ge_{0.1}S_2$ showing the presence of copperpoor chalcopyrite-like secondary phase.

Table S3. XPS binding energies and corresponding oxidation states of individual	elements in
Ge-substituted CuFe _{0.94} Ge _{0.06} S ₂ .	

Element	Peak	B.E(eV)*	Oxidation
			state
Cu	2p _{3/2}	932.3	+1
	2p _{1/2}	952.1	+1
Fe	2p _{3/2}	710.2	+3
	2p _{1/2}	723.7	+3
	2p	707.9	+2
S	2p _{3/2}	161.4	-2
	2p _{1/2}	162.6	-2
Ge	3d _{5/2}	31.2	+4
	3d _{3/2}	31.8	+4
	3d5/2	30.5	+2
	3d _{3/2}	31.1	+2

*The binding energy of the XPS peaks is assigned on the basis of data in the literature¹⁻⁵ and in the NIST database.⁶

Sample	Charge carrier concentration $(\times 10^{19} \text{cm}^{-3})$	Charge carrier mobility (cm ² V ⁻¹ s ⁻¹)
CuFeS ₂	1.4(2)	15(3)
$CuFe_{0.98}Ge_{0.02}S_2$	2.3(2)	11(1)
$CuFe_{0.96}Ge_{0.04}S_2$	3.1(3)	9(2)
$CuFe_{0.94}Ge_{0.06}S_2$	4.7(3)	8(2)
$CuFe_{0.92}Ge_{0.08}S_2$	2.8(4)	11(1)
$CuFe_{0.9}Ge_{0.1}S_2$	1.9(2)	15(2)

Table S4. Hall coefficient data for CuFe_{1-x}Ge_xS₂ ($0 \le x \le 0.1$) at room temperature.

Figure S4. STEM image illustrating the chemical homogeneity of the cations in the defect regions in $CuFe_{0.94}Ge_{0.06}S_2$.

Figure S5. Enlarged HAADF-STEM image showing the uniform distribution of cations in CuFe_{0.94}Ge_{0.06}S₂.

Figure S6. Experimental, calculated and difference pair distribution function, G(r) as a function of atomic-pair distance (r) for CuFe_{1-x}Ge_xS₂ ($0.02 \le x \le 0.1$).

Figure S7. Phonon density of states (DOS) of CuFeS₂.

Table S5. Phonon group velocities of the LA, LA' and TO modes in CuFeS2 and in CuFeS2with 6.25 at.% of Ge substitution.

	CuFeS ₂ (m s ⁻¹)	Ge-substituted CuFeS ₂ (m s ⁻¹)
$\Gamma - X$	2307, 2911, 5127	2470, 2553, 4723
$\Gamma-Z$	2009, 2921, 5271	2300, 2585, 5142
$\Gamma - N$	2352, 5354	2597, 4888

Calculation Details:

• Lorenz number and electronic thermal conductivity:

The electronic part of the thermal conductivity (κ_e) was calculated from the Wiedemann-Franz relation:

$$\kappa_e = L\sigma T \tag{S1}$$

L is the temperature-dependent Lorenz number and T is the temperature. The temperature-dependent Lorenz number was evaluated from the following relation:

$$L = \left(\frac{k_B}{e}\right)^2 \left(\frac{\left(r + \frac{7}{2}\right)F_{r+5/2}(\eta)}{(r + \frac{3}{2})F_{r+1/2}(\eta)} - \left[\frac{\left(r + \frac{5}{2}\right)F_{r+3/2}(\eta)}{(r + \frac{3}{2})F_{r+1/2}(\eta)}\right]^2\right)$$
(S2)

Where k_B is the Boltzmann's constant, η is the reduced Fermi energy that is obtained from Seebeck coefficient values via the relation:

$$S = \pm \frac{k_B}{e} \left(\frac{\left(r + \frac{5}{2}\right) F_{r+3/2}(\eta)}{(r + \frac{3}{2}) F_{r+1/2}(\eta)} - \eta \right)$$
(S3)

Here, $F(\eta)$ is the reduced Fermi integral given by:

$$F_n(\eta) = \int_0^\infty \frac{x^n}{1 + e^{x-\eta}} dx \tag{S4}$$

And $\eta = E_F/k_BT$ where E_F denotes the Fermi level. Assuming that the main scattering mechanism is acoustic phonon scattering, the value of *r* is taken as -1/2. The Lorenz number at each temperature value is therefore obtained by substituting η and *r* in equation (S2).

• Mean sound velocity (v_m) :

$$v_m = \left[\frac{1}{3} \left(\frac{2}{v_t^3} + \frac{1}{v_l^3}\right)\right]^{-\frac{1}{3}}$$

and average sound velocity (vavg):

$$v_{\rm avg} = (2v_t + v_l)/3$$

where, v_l and v_t are the longitudinal and transverse sound velocities, respectively.

• Shear modulus (*G*):

$$G = dv_t^2$$

Where d and v_t are the density and transverse velocities respectively.

• Young's modulus (*E*):

$$E = \frac{dv_t^2 (3v_l^2 - 4v_t^2)}{(v_l^2 - v_t^2)}$$

• Debye temperature (θ_D) :

$$\theta_D = \frac{h}{k_B} \left(\frac{3N}{4\pi V}\right)^{1/3} v_m$$

where *h* is the Plank's constant, k_B is the Boltzmann's constant, *N* is the number of atoms in the unit cell, *V* is the volume of the unit cell and v_m is the mean sound velocity.

• Distortion Parameters:

Bond distortion parameter:

$$\gamma_x = \frac{1}{4} \sum_{i=1}^{4} \left[\frac{\langle x_i \rangle - x_i}{\langle x_i \rangle} \right]^2$$

where $\langle x_i \rangle$ and x_i denote the mean and individual Ge-S bond lengths in the GeS₄ tetrahedra.

Angle distortion parameter:

$$\gamma_{\theta} = \frac{1}{6} \sum_{i=1}^{6} \left[\frac{\langle \theta_i \rangle - \theta_i}{\langle \theta_i \rangle} \right]^2$$

where $\langle \theta_i \rangle$ and θ_i denote the mean and individual S-Ge-S bond angles in the GeS₄ tetrahedra.

• Scattering Parameters:

The point defect parameter (A) can be written as:

$$A = \frac{\Omega_o}{4\pi v_m^3} \Gamma$$

where, Ω_0 is volume of the primitive unit cell, and $\Gamma = \Gamma_M$ (mass-difference fluctuation) + Γ_S (strain-field fluctuation) given by:

$$\Gamma_{\rm M} = \frac{\sum_{i=1}^{n} c_i \left(\frac{\overline{M_i}}{\overline{M}}\right)^2 f_i^2 f_i^2 \left(\frac{M_i^1 - M_i^2}{\overline{M_i}}\right)^2}{\sum_{i=1}^{n} c_i}$$

and,

$$\Gamma_{\rm S} = \frac{\sum_{i=1}^{n} c_i \left(\frac{\overline{M_i}}{\overline{M}}\right)^2 f_i^2 f_i^2 \varepsilon \left(\frac{r_i^1 - r_i^2}{\overline{r_i}}\right)^2}{\sum_{i=1}^{n} c_i}$$

where, $\overline{M_i} = \sum_k f_i^k M_i^k$; $\overline{r_i} = \sum_k f_i^k r_i^k$; $\overline{M} = \frac{\sum_{i=1}^n c_i \overline{M_i}}{\sum_{i=1}^n c_i}$. Here *n* is the number of crystallographic sub-lattices which is 3 for CuFeS₂ and c_i is the degeneracy of each site in the primitive unit cell ($c_1 = c_2 = 1$, $c_3 = 2$ corresponding to Cu, Fe and S sites respectively). $\overline{M_i}$ and $\overline{r_i}$ denote the average mass and radius of the atoms on the *i*th sublattice, respectively. M_i^k and f_i^k are the atomic mass and fractional occupation of the k^{th} atom on the *i*th sublattice, respectively. $\overline{M_i}$ is the total average atomic mass of the compound. ε is a phenomenological adjustable parameter that was evaluated from fitting Equation 1 to the experimental κ_{L} . For CuFe_{1-x}Ge_xS₂ samples, on the basis of germanium substitution occurring at the iron site, the total scattering parameter can be, thus, written as:

$$\Gamma = \frac{1}{4} \left(\frac{\overline{M}_{Fe}}{\overline{M}}\right)^2 x(1-x) \left[\left(\frac{M_{Fe}^{Fe} - M_{Fe}^{Ge}}{\overline{M}_{Fe}}\right)^2 + \varepsilon \left(\frac{r_{Fe}^{Fe} - r_{Fe}^{Ge}}{\overline{r}_{Fe}}\right)^2 \right]$$

References:

- H. Xie, X. Su, G. Zheng, T. Zhu, K. Yin, Y. Yan, C. Uher, M. G. Kanatzidis and X. Tang, *Adv. Energy Mater.*, 2017, 7, 1601299.
- H. Xie, X. Su, S. Hao, C. Zhang, Z. Zhang, W. Liu, Y. Yan, C. Wolverton, X. Tang and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2019, **141**, 18900–18909.
- S. Tippireddy, F. Azough, F. T. Tompkins, A. Bhui, R. Freer, R. Grau-crespo, K. Biswas, P. Vaqueiro and A. V Powell, *Chem. Mater.*, 2022, 34, 5860–5873.
- I. Nakai, Y. Sugitani, K. Nagashima and Y. Niwa, J. Inorg. Nucl. Chem., 1978, 40, 789– 791.
- 5. A. Ghahremaninezhad, D. G. Dixon and E. Asselin, *Electrochim. Acta*, 2013, 87, 97–112.
- NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012); http://srdata.nist.gov/xps/.