Very strong interaction between FeN₄ and titanium carbide for durable

4-electron oxygen reduction reaction suppressing catalyst deactivation

by peroxide

Yeongdae Lee,^{‡a} Jang Hyuk Ahn,^{‡a} Haeseong Jang,^{‡b} Jisu Lee,^a Subhin Yoon,^a Dong-Gyu Lee,^a Min Gyu Kim,^{*b} Jun Hee Lee,^{*a} Hyun-Kon Song^{*a}

Computational Details

The Vienna ab initio simulation package (VASP)¹⁻⁴ with projector augmented wave (PAW) pseudopotentials was used for density functional theory (DFT) calculation.^{5,6} For the exchangecorrelation energy, the Perdew-Burke-Ernzerhof (PBE)⁷ and the PBE functional with van der Waals interaction of the Grimme's method PBE-D2⁸ using the default parameter was utilized with a plane-wave cutoff of 500 eV. All calculations were spin-polarized and Gaussian smearing method with the 1.0E-6 eV energy criteria was applied for electronic self-consistent loop. Atomic positions were relaxed until interatomic force on uninhibited atoms were smaller than 0.02 eV/Å. The crystal orbital Hamilton populations (COHPs) were calculated to investigate the bond orbital interaction between metal and oxygen species.^{9–13}

Minimum 15 Å-thick vacuum was introduced to the FePc and FePc/1L-Ti₃C₂ slabs along the z-direction to reduce the periodic image interference. The single FePc molecule was constructed to have its square-planar plane on the xy-plane. The FePc slab was 18.5 Å $\not S$ 18.5 Å $\not S$ 29.2 Å (**Fig. S6a**). The slab of FePc supported by 1L-Ti₃C₂ (FePc/1L-Ti₃C₂) was constructed by placing the single FePc molecule along the z-direction on the 1L-Ti₃C₂ support supercell slab having 108 titanium and 72 carbon atoms in 18.6 Å $\not S$ 18.6 Å $\not S$ 29.3 Å (**Fig. S6b**). The Brillouin zone was integrated with 2 $\not S$ 2 $\not S$ 1 Gamma grid k-point mesh. The FePc/1L-Ti₃C₂ slab was thermodynamically most stable when a single Fe atom of FePc was coordinated two Ti atoms of 1L-Ti₃C₂ (double coordination via FeTi₂ in **Fig. S7**).

The ORR proceeded on the Fe atom of both supported and unsupported FePc. On the fourelectron (4e) ORR process in alkaline media, molecular oxygen is reduced to hydroxide ions via:^{14–16}

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^ E^\circ = 1.23 \text{ V vs. RHE}$$

Four reaction steps were considered for drawing free energy diagrams in alkaline media:

- (1) *+O₂(g)+H₂O+e⁻ \rightarrow *OOH+OH⁻
- (2) $^{*}OOH + H_2O + e^{-} \rightarrow ^{*}O + H_2O + OH^{-}$
- (3) $^{*}O + H_2O + e^- \rightarrow ^{*}OH + OH^-$
- (4) $^{*}OH + H_2O + e^{-} \rightarrow ^{*} + H_2O + OH^{-}$

where the asterisk mark (*) indicates an adsorbed species on the Fe active site.

Free energies (ΔG) or binding energies of the ORR intermediate adsorbate to active sites were calculated with respect to RHE by:

 $\Delta G = \Delta E + \Delta ZPE - T\Delta S - qU + k_{\rm B}T\ln(10)\beta^{2}pH$

where ΔE = the total energy change; ΔZPE = zero point energy; $T\Delta S$ = entropic energy; q = charge transfer for each reaction step; U = the applied potential; $k_{\rm B}$ = Boltzmann constant. The ZPEs were calculated by frozen phonon method.

Bader charges (ΔQ) of Fe of FePc as well as ORR intermediates were calculated along the 4e ORR pathway. The ΔQ values of Fe and the intermediates were estimated with respect to Fe atom and molecular oxygen (O₂).

Fig. S1. Bulky Ti₃C₂ having multiple layers (*m*L-Ti₃C₂) in SEM images. (a) Overall view.
(b) Edge view. (c) Basal view.

Fig. S2. Edge plane of FePc/mL-Ti₃C₂ in elemental maps by energy-dispersive X-ray spectroscopy (EDS). (a) Scanning-electron-microscopic (SEM) image. (b) Ti. (c) C. (d) Fe. (e) N.

Fig. S3. Adsorption of FePc onto edge planes of bulky Ti_3C_2 having multilayers. The right side of this schematic picture demonstrates that only single Fe-Ti coordination between FePc and Ti_3C_2 is allowed when FePc is adsorbed on the edge plane of Ti_3C_2 .

Fig. S4. Two-dimensional Ti_3C_2 monolayer leaf (1L- Ti_3C_2). (a) Basal plane by TEM. (b) Several overlapped monolayer leaves by TEM. The boundary of 1L- Ti_3C_2 leaves was sketched for clarity, each color indicating a separate leaf. (c) Population distribution of the number of layers.

Fig. S5. XRD spectra of 1L-Ti₃C₂, Ti₃AlC₂ and TiC.

Negligible ORR currents on 1L-Ti₃C₂ as the support without FePc as the ORR catalyst. A large overpotential was required for ORR on 1L-Ti₃C₂ in the absence of FePc (Fig. S6a). The onset potential of ORR on 1L-Ti₃C₂ was 0.8 V_{RHE}, 0.2 V more negative than that of FePc/1L-Ti₃C₂. The ORR current of 1L-Ti₃C₂ was negligible at > 0.8 V_{RHE} where the current of FePc/1L-Ti₃C₂ increased exponentially. Therefore, we concluded that the catalytic ORR currents were dominantly driven by FePc, not its supports, before reaching their limiting value $(i_l = -5.6 \text{ mA cm}^2)$.

Another lesson we can learn from the ORR polarization curves (**Fig. S6a**) is that 4electron (4e) ORR was more favored on FePc supported by 1L-Ti₃C₂ while the support without catalysts significantly produced peroxide (HO₂⁻) as an incompletely reduced species via 2e ORR. The number of electrons transferred (*n*) of the ORR on FePc/1L-Ti₃C₂ was estimated to be almost 4, which was read from its i_l by Levich equation. On the other hand, the i_l of 1L-Ti₃C₂ without catalysts was around a half of FePc/1L-Ti₃C₂, supporting 2e ORR rather than 4e ORR. At cathodic potentials enough to encourage both the ORR currents on FePc-present and FePc-absent 1L-Ti₃C₂ to reach their limiting values, *n* was calculated from disk and ring currents of rotating ring disk electrode experiments: n = ~4 for FePc/1L-Ti₃C₂; n = ~3 for 1L-Ti₃C₂. 1L-Ti₃C₂ was not able to reduce oxygen molecules completely even at enough overpotentials.

Fig. S6. ORR on 1L-Ti₃C₂ with and without FePc. Disk potential was cathodically scanned The disk electrode was rotated at 1600 rpm in 0.1 M KOH (aq). (a) Disk current density (j_{disk}) along disk potential. (b) Ring current (i_{ring}) along disk potential. (c) The number of electron transferred (*n*) calculated from disk and ring currents.

Fig. S7. Tafel plots.

Table S1. ORR metrics comparison of electrocatalysts based on FeN₄ and Fe-N-C active sites. E_{onset} = onset potential; $E_{1/2}$ = half-wave potential; b = Tafel slope.

Electrocatalysts	E _{onset} V _{RHE}	$E_{1/2} onumber V_{ m RHE}$	<i>b</i> mV dec ⁻¹	Reference
FePc/1L-Ti ₃ C ₂	1.00	0.92	31	This work
FePc/mL-Ti ₃ C ₂	0.97	0.89	-	This work
FePc	0.96	0.88	34	This work
Pt/C	1.03	0.85	79	This work
$FePc/mL-Ti_3C_2$	0.97	0.89	-	17
FeAB-O	0.98	0.90	27.5	18
FePc/AB	0.96	0.87	37.5	18
Fe-SAs/NSC	1.00	0.87	-	19
Fe-N/P-C-700	0.94	0.87	-	20
Fe/OES	1.00	0.85	-	21
PCNT@Fe@GL	0.97	0.87	61.9	22
Fe/SNC	0.97	0.85	-	23
FePhen@MOFArNH ₃	1.03	0.86	-	24
Fe_2 - Z_8 - C	0.98	0.87	-	25
FeSAs/PTF-600	1.01	0.87	-	26
SA-Fe-HPC	1.00	0.89	49	27
Fe-ISA/NC	-	0.90	-	28
Fe-ISAs/CN	0.99	0.90	-	29
Fe SAs-N/C-20	-	0.91	-	30
Fe _{SA} -N-C	-	0.89	-	31
SA-Fe/NHPC	-	0.87	-	32

Fig. S8. E_{1/2} comparison from Table S1.

Fig. S9. Radial distribution functions obtained by Fourier-transforming EXAFS spectra at indicated potentials. (a) FePc. (b) FePc/1L-Ti₃C₂.

Fig. S10. The difference of the maximum intensities between FePc/1L-Ti₃C₂ and FePc at indicated potentials. $\Delta I = I_{\text{FePc/1L}}$. Ti_{3C2} - I_{FePc} with I = maximum intensity. The values of I was read around 1.5 Å from Fig. 2b.

Fig. S11. Electrochemical responses of ORR in the cells used for the *Operando* EXAFS experiments (Fig. 2b). The cells were constructed with three electrodes: catalyst-loaded carbon papers as the working electrode; platinum as the counter electrode; and Hg/HgO as the reference electrode.

Fig. S12. Structures. Refer to Fig. 1a for the atomic colors. (a) FePc. (b) FePc/1L-Ti₃C₂ with FeTi₂ coordination.

Fig. S13. The coordination between Fe of FePc and Ti of 1L-Ti₃C₂. Refer to Fig. 1a for the atomic colors. The binding energies of FePc to 1L-Ti₃C₂ (ΔE) were indicated with respect to the double coordination in **b**. (a) FeTi coordination. (b) FeTi₂ coordination. (a) FeTi₃ coordination.

Fig. S14. Four-electron (4e) ORR pathway on FePc and FePc/1L-Ti₃C₂. The molecular configurations were calculated by DFT.

Fig. S15. Projected density of states (PDOS) of Fe d-orbital. E = energy; $E_f = Fermi level$. (a) FePc. (b) FePc/1L-Ti₃C₂.

Fig. S16. Partial density of states (PDOS) and crystal orbital Hamiltonian population (-*COHP*) of the ORR intermediates adsorbed on 1L-Ti₃C₂-supported and unsupported FePc. E = energy; $E_f =$ Fermi level; σ and $\sigma^* =$ bonding and antibonding sigma molecular orbitals, respectively (resulting from the combination of Fe d_z² and O p_z); π and $\pi^* =$ bonding and antibonding pi molecular orbitals, respectively (Fe d_{yz}, d_{zx} and O p_x, p_y). The net summation of -COHP was indicated as a measure of bonding strength. (a) *O. (b) *OH. (c) *OOH.

Fig. S16. (Continued) PDOS and -COHP.

Fig. S17. Cyclic voltammograms of peroxide reduction reaction (PRR) at the cathodic scan and peroxide oxidation reaction (POR) at the anodic scan. Counter electrode = Graphite rod; Reference electrode = Hg/HgO; Electrolyte = Ar-purged 0.1 M KOH with 10 mM peroxide; 1600 rpm with 50 mV s⁻¹. (a) FePc. (b) FePc/1L-Ti₃C₂.

Fig. S18. Free energy (ΔG) diagrams along the 2-electron-transfer (2e) ORR pathway at the standard reduction potential of peroxide generation (0.7 V_{RHE}).

References

- 1 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 2 G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15–50.
- 3 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251–14269.
- 4 G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, **47**, 558–561.
- 5 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 6 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- 7 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 8 S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
- 9 R. Dronskowski and P. E. Bloechl, J. Phys. Chem., 1993, 97, 8617–8624.
- V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, J. Phys. Chem. A, 2011, 115, 5461–5466.
- S. Maintz, V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, J. Comput. Chem., 2013, 34, 2557–2567.
- S. Maintz, V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, J. Comput. Chem., 2016, 37, 1030–1035.
- R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier and R. Dronskowski, J. Comput. Chem., 2020, 41, 1931–1940.
- J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and
 H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886–17892.
- Á. Valdés, Z. W. Qu, G. J. Kroes, J. Rossmeisl and J. K. Nørskov, *J. Phys. Chem. C*, 2008, **112**, 9872–9879.
- 16 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.*, 2010, **3**, 1311–1315.
- 17 Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen,

L. Mai and S. Guo, Adv. Mater., 2018, 30, 1803220.

- K. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li,
 J. Li, Y. R. Lu, T. S. Chan, N. Zhang and M. Liu, *Nat. Commun.*, 2020, 11, 1–8.
- J. Zhang, Y. Zhao, C. Chen, Y.-C. Huang, C.-L. Dong, C.-J. Chen, R.-S. Liu, C. Wang,
 K. Yan, Y. Li and G. Wang, *J. Am. Chem. Soc.*, 2019, 141, 20118–20126.
- K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang,
 M. K. H. Leung, Y. Chen and U. Scherf, J. Am. Chem. Soc., 2020, 142, 2404–2412.
- 21 C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu and Q. Xu, Angew. Chemie, 2020, 132, 7454–7459.
- 22 S. H. Ahn, X. Yu and A. Manthiram, *Adv. Mater.*, 2017, **29**, 1606534.
- 23 P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu and Y. Xie, *Angew. Chemie*, 2017, **129**, 625–629.
- K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen and S. Mukerjee, *Nat. Commun.*, 2015, 6, 7343.
- 25 Q. Liu, X. Liu, L. Zheng and J. Shui, *Angew. Chemie*, 2018, **130**, 1218–1222.
- J.-D. Yi, R. Xu, Q. Wu, T. Zhang, K.-T. Zang, J. Luo, Y.-L. Liang, Y.-B. Huang and R.
 Cao, ACS Energy Lett., 2018, 3, 883–889.
- 27 Z. Zhang, J. Sun, F. Wang and L. Dai, *Angew. Chemie*, 2018, **130**, 9176–9181.
- Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W. Cheong, R. Shen, N. Fu, L. Gu, Z. Zhuang, C. Chen, D. Wang, Q. Peng, J. Li and Y. Li, *Adv. Mater.*, 2018, 30, 1800588.
- Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D.
 Wang and Y. Li, *Angew. Chemie*, 2017, **129**, 7041–7045.
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen and L. Wang, J. Am. Chem. Soc., 2018, 140, 11594–11598.

- 31 L. Jiao, G. Wan, R. Zhang, H. Zhou, S. Yu and H. Jiang, *Angew. Chemie Int. Ed.*, 2018, 57, 8525–8529.
- 32 Z. Zhang, X. Gao, M. Dou, J. Ji and F. Wang, *Small*, 2017, **13**, 1604290.