Supporting Information

Multivalent ruthenium immobilized by self-supported NiFeorganic frameworks for durable electrocatalytic overall water splitting

Wei Jiang^{a,b,1}, Jia Wang^{a,c,1}, Yu Jiang^{a,c}, Yuanyuan Wu^{a,c}, Bo Liu^{a,c}, , Xianyu Chu^{a,c}, Chunbo Liu^{a,b,*},Guangbo Che^{a,d,*}, Yang Lu^{e,*}

^a Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China.

^b College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.

^c College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.

^d College of Chemistry, Baicheng Normal University, Baicheng, 137000, P. R. China.

e College of mathematics and computer, Jilin Normal University, Siping, 136000, P. R. China.

¹ These authors contributed equally to this work.

*Correspondence author E-mail: chunboliu@jlnu.edu.cn (Chunbo Liu) E-mail: guangboche@jlnu.edu.cn (Guangbo Che) E-mail: luyang33@126.com (Yang Lu)

Fax:+86-434-3290623

1. Experimental

1.1 Materials

All chemicals and reagents were of analytical grade and used without further purification. H₂BDC-NH₂ was purchased from Aladdin Reagent Co. Ltd. RuCl₃• xH_2O was obtained from Macklin Reagent Co. Ltd. N,N' -dimethylformamide (DMF) was offered from Tianjin Tiantai Chemicals Co. Ltd. Commercial NFF (thickness: 1.5 mm) was provided by Longshengbao Co. Ltd.

1.2 Characterization

X-ray powder diffraction (XRD) pattern characterization was recorded on a PC2500 diffractometer. Scanning electron microscopy (SEM) images were taken on a HITACHI-Regulus8100 scanning electron microscope. The functional groups of catalysts were characterized through Fourier transformed infrared (FT-IR, Thermoscientific Nicolet 4700). Corresponding energy-dispersive X-ray spectroscopy (EDX) elemental maps were gained using a UltimMax65 equipped with an Oxford energy dispersive spectrometer. X-ray photoelectron spectroscopy (XPS) was conducted on an ESCALAB250X X-ray photoelectron spectrometer.

1.3 Construction of Ru-doped NiFe-MOF powder

Firstly, 540.4 mg of Ni(NO₃)₂•6H₂O, 135.1 mg of FeCl₃•6H₂O, and 362.4 mg of H₂BDC-NH₂ were added in the the Teflon autoclave with 44.8 mL of DMF and 6.4 mL of ethanol. Subsequently, the Teflon autoclave was sealed and heated at 150°C for 3 h to obtain NiFe-MOF powder. After cleaned with ethanol and dried, the obtained NiFe-MOF powder was added to a 50 mL of ethanol solution containing 10 mg of RuCl₃ and then heated at 80°C for 12 h. After cooling down to room temperature, the Ru-doped NiFe-MOF powder was washed with ethanol and dried at 60°C.

1.3 Electrochemical measurements

All electrochemical tests of HER and OER were represented on a PGSTAT-302 N (Metrohm) electrochemical analyzer at room temperature. A typical three-electrode system was used, with a saturated calomel electrode as the reference electrode, carbon rod as the counter electrode, and each self-supported catalyst as the working electrode. The electrochemical test was carried out in 1 M KOH solution saturated with N₂. The voltage range of LSV curve is 0.306 V-0.706 V and (-0.924 V)-(-1.124 V) with 80% iR compensation, and the sweep speed is 1 mV/s. The slope of Tafel is calculated by the formula η =a+b·log(j). The impedance is measured in the range of 0.1-100 KHz with an amplitude of 5 mV. The Faraday efficiencies of hydrogen and oxygen production were measured at voltages -0.95 V and 0.51 V, respectively. In addition, Ru_{9.1}-NiFe-MOF/NFF participated in electrochemical reaction with an area of 0.09 cm² and a loading capacity of 4.1 mg cm⁻³. The loading capacity of RuO₂/NFF and Pt/C/NFF electrodes is 2.5 mg cm⁻².

Ru ₀₁ -NiFe-MOF/NFF	C	Ν	О
1 µm	1µm	Iμm	1.µm
Fe	Ni 1µm	Cl Time	Ru

(a)

Ru _{0.2} -NiFe-MOF/NFF	C	N	0
ι _{μm}	1 µm	<u>1 µm</u>	1 µт
Fe	Ni	Cl	Ru
1 µm	1 µm	<u>Lµm</u>	<u>1 µт</u> , 200 г.

(b)

Ru ₀₃ -Nife-MOU/NFF	C	N	0	
sum Can F	5 µm	5 μm	<u>. 5 րտ</u>	
Fe	Ni	Cl	Ru	
5 µm	<u>5 µm</u>	<u>5µm</u>	<u>5 μm</u>	

(c)

(f)

(g)

Fig. S1. The EDS-mapping of Ru_{0.1}-NiFe-MOF/NFF (a), Ru_{0.2}-NiFe-MOF/NFF (b), Ru_{0.8}-NiFe-MOF/NFF (c), Ru_{3.1}-NiFe-MOF/NFF (d), Ru_{6.7}-NiFe-MOF/NFF (e), Ru_{9.1}-NiFe-MOF/NFF (f), Ru_{14.5}-NiFe-MOF/NFF(g).

Fig. S2. XRD patterns of NiFe-MOF/NFF and Ru_{9.1}-NiFe-MOF/NFF.

Fig. S3. XRD patterns of Ru-doped NiFe-MOF powder.

Fig. S4. SEM images of (a) $Ru_{0.1}$ -NiFe-MOF/NFF, (b) $Ru_{0.2}$ -NiFe-MOF/NFF, (c) $Ru_{0.8}$ -NiFe-MOF/NFF and (d) $Ru_{14.5}$ -NiFe-MOF/NFF.

Fig. S5. The SAED pattern of Ru_{9.1}-NiFe-MOF/NFF.

Fig.S6. Cyclic voltammograms of (a) NiFe-MOF/NFF, (b) $Ru_{9,1}$ -NiFe-MOF/NFF, (c) 20Ru/NFF and (d) NFF at scan rates from 20 to 100 mV s⁻¹ for HER.

Fig. S7. Cyclic voltammograms of (a) NiFe-MOF/NFF, (b) Ru_{9.1}-NiFe-MOF/NFF, (c) 20Ru/NFF

and (d) NFF at scan rates from 20 to 100 mV s⁻¹ for OER

	Area 1	Area 2	Area 3	Average
Ru _{0.1} -NiFe-MOF/NFF	0.1	0.1	0.1	0.1
Ru _{0.2} -NiFe-MOF/NFF	0.2	0.2	0.2	0.2
Ru _{0.8} -NiFe-MOF/NFF	0.8	0.6	0.9	0.8
Ru _{3.1} -NiFe-MOF/NFF	3.4	2.9	3.2	3.1
Ru _{6.7} -NiFe-MOF/NFF	6.2	6.9	7.0	6.7
Ru _{9.1} -NiFe-MOF/NFF	7.8	9.9	9.5	9.1
Ru _{14.5} -NiFe-MOF/NFF	16.4	13	14	14.5

Table S1 The actual doping percent (at%) of Ru species in Ru_x -NiFe-MOF/NFF determined by repeated EDS.

 Table S2 The corresponding actual doping content of Ru species with different amount of RuCl₃ usage.

RuCl ₃ usage (mg)	Actual doping content of Ru (%)		
2	0.1		
5	0.2		
10	0.8		
13	3.7		
16	6.7		
20	9.1		
50	14.5		

Table S3 The actual doping percent (at%) of Cl species in Ru_{9.1}-NiFe-MOF/NFF before and after catalysis determined by repeated EDS.

	Area 1	Area 2	Area 3	Average
before catalysis	4.2	4.9	3.6	4.2
after catalysis	0.1	0.2	0.3	0.2