Supporting Information

Bidirectional Catalyst Design for Lithium-Sulfur Batteries: Phase

Regulation Cooperates with N-Doping

Xinqi Liang^a, Jinyan Cai^b, Saisai Qiu^a, Shuwen Niu^b, Yulong Liu^a, Xi Wang^a, Gongming

Wang^b, Zhen Chen^{a*}, Minghua Chen^{a*}

^a Key Laboratory of Engineering Dielectric and Applications (Ministry of Education),
School of Electrical and Electronic Engineering, Harbin University of Science and Technology,
Harbin 150080, China
^b Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry,
University of Science & Technology of China, Hefei 230026, China

*Corresponding author. *E-mail address:* mhchen@hrbust.edu.cn (M. H. Chen) *E-mail address:* chen.zhen@hrbust.edu.cn (Z. Chen)

Experimental Section

1. Synthesis of MoS₂@CNTs: Before the preparation of MoS₂@CNTs, purchased CNTs were first activated by hydrothermal treatment with concentrated nitric acid at 90 °C to obtain better hydrophilicity. And the ultrathin MoS₂ nanoflakes anchored CNTs was synthetic by a hydrothermal method. In a typical preparation, 40 mg of CNTs were dispersed into 40 mL of deionized water, and 0.4 g of glucose was added to the above solution stirred for 30 minutes until dissolved. 0.4 g of sodium molybdatate dihydrate (Na₂MoO₄·2H₂O) and 0.8 g of thiourea were added to the homogeneous solution and stirred for 30 min, respectively. Finally, the reaction liquid was transferred to a 100 mL reactor, sealed, and kept at 200 °C for 2 h. Afterwards, the precipitate was collected by centrifugation and cleaned several times with deionized water and ethanol.

2. Preparation of N-MoS₂@CNTs: Firstly, the as-prepared MoS_2 @CNTs powder is evenly dispersed on the surface of the quartz plate in a thin layer. Then, the quartz plate loaded with the sample was transferred to the plasma reaction chamber. We chose NH₃ as the nitrogen source and fed it into the system at a fed rate of 25 sccm. The pressure in the reaction chamber was maintained at 10 Pa during the glow discharge process. The power of RF plasma was at 250 W for 30-120 s to control N doping content.

3. Preparation of S/CNTs, S/MoS₂@CNTs and S/N-MoS₂@CNTs: The preparation methods of the S/CNTs, S/MoS₂@CNTs, S/N-MoS₂@CNTs are similar, so we take the

preparation of S/N-MoS₂@CNTs composite as an example. CNT, N-MoS₂@CNTs and S were mixed and ground at a mass ratio of 2:2:6, then encapsulated in a Pasteures-tube, sealed and heated at 155 °C for 12 h. The preparation method of S/CNTs and S/MoS₂@CNTs composite positive electrodes is the same as above, except that N-MoS₂ is replaced by responding samples.

4. Materials Characterization: SEM (Hitachi SU8020) was used to the morphology of the samples. TEM (JEOL JEM-2100) equipped with an energy dispersive spectrometer was used to further characterize the morphology and microstructure of the samples. XRD of all samples were performed on the EMPYREAN X-ray diffractometer using Cu K α radiation from 5° to 80°. XPS spectra were obtained using a PHI 5000Versa Probe system. TGA was conducted on a Perkin-Elmer TGA 7 thermogravimetric analysis. The EPR measurement of vacancies was conducted with an Endor spectrometer (Bruker A300) at 77 K.

5. Electrochemical Measurements:

The prepared sulfur composite cathode (S/CNTs, S/MoS₂@CNTs, S/N-MoS₂@CNTs) was mixed with Super P and PVDF at a mass ratio of 8:1:1 and dispersed in NMP. The homogeneous slurry formed was blade coating onto an aluminum foil and dried at 60 °C for 24 h in a vacuum oven to ensure the complete removal of solvent. The S load on the single electrode is about 1.1-1.35 mg cm⁻² and the electrolyte was a combination of 1 M lithium bis (trifluoromethane sulfonyl)imide and 2 wt% LiNO₃ dissolved in 1,3-dioxolane and 1,2-dimethoxyethane (DOL: DME=1:1, v/v). The E/S is 20 μ L/mg. All cyclic performance tests were carried out under this condition except for the performance test of high sulfur load. The E/S under the condition of high sulfur load is 12 μ L/mg. The electrochemical tests were performed with coin-type cells (CR2032) constructed with lithium metal foil as the anode. A microporous polypropylene film membrane (Celgard 2325) was used to separate the electrodes. All cells were prepared in an Ar-filled dry box (MBRAUN). The cells were typically cycled at 25 °C at constant currents equivalent to 0.2 C and 1 C rates within the voltage range of 1.8-2.6 V. The rate values in this paper are based on the sulfur mass loadings.

6. Preparation of Li₂S₆ Electrolyte: Li₂S and sulfur were mixed at a molar ratio of 1:5 in conventional electrolyte in a glass bottle. The mixture was magnetic stirred for 24 h at 50 °C in an Ar-filled glove box to obtain a Li₂S₆ electrolyte (0.2 M) for the symmetric cell characterizations. In addition, Li₂S₆ electrolyte (5 × 10⁻³ M) was prepared through the same method for the adsorption test.

7. Preparation of Li₂S₈ Electrolyte: Li₂S and sulfur were mixed at a molar ratio of 1:7 in

tetraglyme solution. The mixture was magnetically stirred for 24 h at 50 °C in an Ar-filled glove box to obtain a Li_2S_8 electrolyte (0.25 M) for the symmetric cell characterizations.

8. Symmetric Cells Assembly and Performance Measurement: The electrodes for symmetric cells were prepared by mixing actively materials and PVDF binder at a weight ratio of 9:1 in NMP to obtained slurry, which was then coated on carbon cloth with a mass loading of 1.2 mg cm⁻². The punched electrode disks (12 mm) were used as identical working and counter electrodes to assemble symmetric cells with Li_2S_6 electrolyte (40 µL). The CV curves were measured on electrochemical workstation (Chenhua CHI-660e) at a scanning rate of 0.5 mV s⁻¹ from -1.5 to 1.5 V.

9. Theoretical Calculation:

All the calculations were carried out via the plane projector augmented wave based density functional theory (DFT) method on CASTEP code in Material Studio package of Accelrys Inc. The Perdew-Burke-Ernzerhof (PBE) of generalized gradient approximation (GGA) were adopted for the electron exchange and correlation energy with the ultrasoft pseudo-potentials (US) for the core electrons. The MoS₂ and N-MoS₂ (002) surface were set with periodic 1.3 layer slab and a vacuum width of 15 Å between the slabs along the Z axis. A cutoff energy of 350 eV for plane-wave basis set was adopted f electron wave description. The Brillouin zone was sampled by $3 \times 3 \times 1$ k-points grid with Monkhorst-Pack mesh method for surface calculation and the self-consistent field (SCF) tolerance was 1×10^{-5} eV/atom for energy convergence criterion and 0.03 eV/Å for force convergence criterion. The polysulfide adsorption energy E_{ad} is calculated by $E_{ad} = E_{Li_2S_x/surf} - E_{Li_2S_x} - E_{surf}$, where $E_{Li_2S_x/surf}$ and E_{surf} are the total energies of the surface with and without the polysulfide adsorbate and $E_{Li_2S_x}$ is the total energy of a free polysulfide molecule.

Figure Captions

Figure S1. SEM images of a) N-MoS₂@CNTs-0s; b) N-MoS₂@CNTs-30s; c) N-MoS₂@CNTs-60s; d) N-MoS₂@CNTs-90s.

Figure S2. SEM images of S/N-MoS₂@CNTs-60s.

Figure S3. TGA curves of different samples.

Figure S4. Nitrogen adsorption–desorption isotherm curves of N-MoS₂@CNTs, the inset shows their pore-size distribution curves.

Figure S5. Potentiostatic discharge profiles of a Li_2S_8 /tetraglyme solution on various surfaces at 2.05 V.

Figure S6. Potentiostatic charge profiles of a Li_2S_8 /tetraglyme solution on various surfaces at 2.4 V.

Figure S7. CV curves at different scan rates of different samples.

Figure S8. Digital photo of Li₂S₆ adsorption test.

Figure S9. XRD curve of S/N-MoS₂@CNTs.

Figure S10. Charge/discharge curves of S/CNTs at various C-rates (0.1 C to 5 C).

Figure S11. Charge/discharge curves of MoS₂@CNTs at 0.1 C to 5 C.

Table S1. Performance comparison of N-MoS $_2$ /CNTs composite with other MoS $_2$ based materials in literatures.

Sample	S loading (mg cm ⁻²)	S content (wt.%)	Current density	Initial dis Ca	[ref.]		
MoS ₂ coated separator		65	0.5C	808	600	0.083%	1
			50				

N-MoS2@CNTs as sulfur host	1.1 1.1 5.1	73.68	0.1C 1C 0.1C	1313.6 804 970.4	200 1000 100	0.13% 0.047% 1.01%	This work
MoS ₂ @G-PCNFs as sulfur host	1		0.1	1385	100	0.38%	9
MoS ₂ /Graphene as interlayer	0.8–1.2	60	0.5 A g ⁻¹	850	200	0.094%	8
P-Mo _{0.9} Co _{0.1} S ₂ as sulfur host	2	80	0.5C	1332	150	0.072%	7
CC@MoS ₂ as sulfur host	2		0.5C	898	300	0.074%	6
rGO/MoS ₂ as sulfur host	0.85	80	1C	873	300	0.15%	5
rGO/MoS ₂ coated separator	1.8-2	70	0.2C	1121	200	0.2%	4
$MoS_2/g-C_3N_4$ as sulfur host	1.5	59.1	1C	780	400	0.067%	3
Thin layered MoS_2 coated on	4	70	0.5C	983	150	0.34%	2

References

- 1. Z. A. Ghazi, X. He, A. M. Khattak, N. A. Khan, B. Liang, A. Iqbal, J. X. Wang, H. S. Sin, L. S. Li and Z. Y. Tang, *Adv. Mater.*, 2017, **29**, 1606817.
- 2. P. J. Han, S. H. Chung and A. Manthiram, ACS Appl. Mater., 2018, 10, 23122-23130.
- 3. S. Majumder, M. H. Shao, Y. F. Deng and G. H. Chen, JPS, 2019, 431, 93-104.
- 4. L. Tan, X. H. Li, Z. X. Wang, H. J. Guo and J. X. Wang, *ACS Appl. Mater.*, 2018, **10**, 3707-3713.
- 5. Y. You, Y. W. i. Ye, M. L. Wei, W. J. Sun, Q. Tang, J. Zhang, X. Chen, H. Q. Li and J. Xu, *Chem. Eng. J.*, 2019, **355**, 671-678.
- 6. C. Tian, J. Wu, Z. Ma, B. Li, X. Zhang, X. Zu, X. Xiang and S. Li, *Energy Reports*, 2020, **6**, 172-180.
- 7. H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao, G. W. Zheng and J. Y. Lee, *Adv. Energy Mater.*, 2019, **9**, 1902096.
- 8. P. Guo, D. Liu, Z. Liu, X. Shang, Q. Liu and D. He, *Electrochim. Acta*, 2017, **256**, 28-36.
- 9. C. Chai, H. Tan, X. Fan and K. Huang, *JAllC*, 2020, **820**.