Supplementary materials

V_2 **CT**_x**-MXene Partially Derived Hybrid** VS_2/V_2 **CT**_x

Electrode for Capacitive Deionization with Exceptional Rate

and Capacity

Fei Yu¹, Zhengqu Yang¹, Xiaochen Zhang¹, Peiyu Yang¹, Liqing Li², Jie Ma^{2,3*}

¹ College of Marine Ecology and Environment, Shanghai Ocean University, No

999, Huchenghuan Road, Shanghai, 201306, PR China

² Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science

and Technology, Ganzhou, 341000, P.R. China

³ Research Center for Environmental Functional Materials, College of

Environmental Science and Engineering, Tongji University, 1239 Siping Road,

Shanghai 200092, P.R. China

The salt adsorption capacity (SAC, $mg \cdot g^{-1}$) was obtained by the following equation:

$$
SAC = \frac{(C_0 - C_t) \times V}{m}
$$
 (S1)

where C_0 and C_t represent the concentrations of NaCl at the initial stage and t min (mg L[−]¹), respectively; V stands for the volume of the NaCl solution (L); and m is the overall mass of the active material (g).

In addition, the salt removal rate (SRR, $mg \cdot g^{-1} \cdot min^{-1}$) could be determined by the following equation:

$$
SRR = \frac{SAC}{t}
$$
 (S2)

among them, t (s) refers to the Charging time.

The energy consumption (EC, kw·h·kg⁻¹-NaCl) could be calculated by the following equation:

$$
J \times m \times \int_{t_0}^{t_e} u dt
$$

$$
E = \frac{J \times m \times \int_{t_0}^{t_e} u dt}{300 \times (C_0 - C_e) \times V}
$$
 (S3)

where J refers to the set current density $(mA·g⁻¹)$, m refers to the mass of the electrode active material (g), t_0 is the time (s) at the start of a given cycle of desalination, t_e is the time (s) at the end of a given cycle of desalination, u refers to the voltage (V) , C_e represents the NaCl concentration at the end of the desalination stage and dt is measured in seconds.

In the EQCM behavior, the variation of resonance width $\Delta W_n/n$ is obtained by converting the dissipation factor:

$$
\frac{\Delta W_n}{n} = f_0 \times \frac{\Delta D_n}{n}
$$
 (S4)

among them, f_0 is the fundamental frequency of the quartz wafer (5 MHz) when the sample is not loaded, $n = 1, 3, 5, 7, 9, 11, 13$.

When the deposited film is rigid, the bandwidth of the standing wave does not increase, so the relationship between the film mass (Δm) and the corresponding resonant frequency can be expressed by the classical Sauerbrey equation[1]:

$$
\Delta m = -C \times \frac{\Delta f}{n} \tag{S5}
$$

where C is the mass sensitivity constant $(C = \sqrt{\mu_q \times \rho_q})$, μ_q and ρ_q are the elastic shear modulus and density. For a crystal with $f_0 = 5$ MHz, C = 17.7 ng·cm⁻²·Hz⁻¹.

Figure S1. (a) SEM image of VS_2/V_2CT_x film before 60-cycle of CDI desalination; (b)

SEM image of $\text{VS}_2/\text{V}_2\text{CT}_x$ film after 60-cycle of CDI desalination.

Figure S2. The theoretical and experimental ion population changes $(\Delta \Gamma)$ as a function of charge density (Δ Q) during charging and discharging process (n = 3, scan rate = 0.03 V·s⁻¹).

The experimental ion population change $(\Delta\Gamma_{\rm exp})$ can calculate by the following equation:

$$
\Delta\Gamma_{exp} = \frac{\Delta m}{M_i} \tag{S6}
$$

where Δm is the mass change, and the molecular mass M_i of Na^+ is 23 g·mol⁻¹. The theoretical ion population change $(\Delta\Gamma_{\rm theor})$ can calculate with the adoption of Faraday's law:

$$
\Delta\Gamma_{theor} = \frac{\Delta Q}{nF} \tag{S7}
$$

where ΔQ is the charge passed through the electrode (C), n is the valence number of the ion $(n=1)$, and F is the Faraday constant (96485 C·mol⁻¹).

Parameters	\mathbf{D}^+	D	Normalized score	Rank
$IC-100$	0.33	$\boldsymbol{0}$	$\overline{0}$	$\overline{4}$
$IC-300$	0.01	0.33	0.5221	$\mathbf{1}$
$IC-500$	0.24	0.12	0.1769	3
$IC-700$	0.15	0.19	0.3009	$\overline{2}$
$CD-40$	0.12	0.15	0.2424	$\overline{3}$
$CD-50$	0.06	0.22	0.3398	$\overline{2}$
$CD-60$	0.05	0.20	0.3399	$\mathbf{1}$
$CD-70$	0.24	0.003	0.0778	$\overline{4}$
CFV-1.2	0.14	0.35	0.3895	$\overline{2}$
$CFV-1.4$	0.09	0.32	0.4306	$\mathbf{1}$
$CFV-1.6$	0.35	0.14	0.1799	3

Table 1. Evaluation and ranking of the operating parameters using TOPSIS-

Entropy weight model

References

[1] G. Sauerbrey, Use of a Quartz Vibrator for Weighing Thin Films on a Microbalance, Eur. Phys. J. A, 155 (2) (1959) 206−222.