## Supporting information

## Tough, anti-drying and thermoplastic hydrogels consisting of biofriendly resources for wide linear range and fast response strain sensor

Cuiwen Liu,<sup>a</sup> Ru Zhang,<sup>a</sup> Yao Wang,<sup>a</sup> Jinqing Qu,<sup>b</sup> Jingtao Huang,<sup>a</sup> Mengting Mo,<sup>a</sup> Ning Qing,<sup>a</sup> Liuyan Tang<sup>a,\*</sup>

<sup>a</sup> School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China

<sup>b</sup> School of Chemistry and Chemical Engineering, South China University of Technology,

Guangzhou 510640, China

\*Corresponding author:

E-mails: wyuchemtangly@126.com (Liuyan Tang)

| Sample       | PVA (g) | CS (g) | PA (mL) | H <sub>2</sub> O (mL) |
|--------------|---------|--------|---------|-----------------------|
| PVA-CS-2PA-3 | 1.40    | 0.28   | 2       | 3                     |
| PVA-CS-3PA-2 | 1.40    | 0.28   | 3       | 2                     |
| PVA-CS-4PA-1 | 1.40    | 0.28   | 4       | 1                     |

 Table S1. Compositions of PVA-CS-PA hydrogels.



Fig. S1. FTIR spectra of the PVA powder, CS powder and PVA-CS-3PA-2 hydrogel.



Fig. S2. XRD spectra of the PVA powder and the PVA-CS-3PA-2 hydrogel.

**(a)** 



**Fig. S3.** (a) Biodegradation images of PVA-CS-3PA-2 hydrogels. (b) Degradation degree of the PVA-CS-3PA-2 hydrogel in soil.



Fig. S4. SEM images of PVA-CS-3PA-2 hydrogel.



**Fig. S5.** The conductivity of PVA-CS-PA hydrogels with different volume ratios of PA: H<sub>2</sub>O.



**Fig. S6.** The real resistance of PVA-CS-3PA-2 hydrogel sensor response time and recovery time at 10% strain.



**Fig. S7.** Relative resistance changes of PVA-CS-3PA-2 hydrogel sensors under 100 % strain at various stretching rate.



**Fig. S8.** Relative real-time resistance signals of the hydrogel sensor in response to human motions, including (a) wrist bending, and (b) slow walking.



Fig. S9. Variation of viscosity of PVA-CS-3PA-2 hydrogel as a function of shear rate under a strain of 1.25% at 70  $^{\circ}$ C.



**Fig. S10.** FTIR spectra of the PVA-CS-3PA-2, PVA-CS-3PA-2R, and PVA-CS-3PA-2F hydrogels.



**Fig. S11.** XRD spectra of the PVA-CS-3PA-2, PVA-CS-3PA-2R, and PVA-CS-3PA-2F hydrogels.



**Fig. S12.** The conductivity of the PVA-CS-3PA-2, PVA-CS-3PA-2R, and PVA-CS-3PA-2F hydrogels.



Fig. S13. SEM images of PVA-CS-3PA-2R hydrogel.



Fig. S14. SEM images of PVA-CS-3PA-2F hydrogel.



**Fig. S15.** Relative real-time resistance signals of PVA-CS-3PA-2R and PVA-CS-3PA-2F hydrogel-based strain sensors during (a-b) elbow bending and (c-d) running.



Fig. S16. SEM images of PVA-CS-3PA-2 hydrogel after being stored for 35 days.



**Fig. S17**. The conductivity of PVA-CS-3PA-2 hydrogel before and after being stored for 35 days at 25 °C.



**Fig. S18.** The tensile stress-strain curves of PVA-CS-3PA-2 hydrogel before and after being stored for 35 days at 25 °C.



**Fig. S19**. The fracture energy of PVA-CS-3PA-2 hydrogel before and after being stored for 35 days at 25 °C.



Fig. S20. The compressive stress-strain curves of PVA-CS-3PA-2 hydrogel before and after being stored for 35 days at 25  $^{\circ}$ C.



**Fig. S21.** Relative resistance changes of PVA-CS-3PA-2 hydrogel sensor under various relative humidity.



**Fig. S22.** Relative real-time resistance signals of the hydrogel sensor after 35 days storage in response to human motions, including (a) wrist bending, (b) elbow bending, (c) walking and (d) running.

| Materials                              | Strain sensing<br>range (%) | Gauge factor                             | Response<br>time (ms)/Strain (%) |     | Ref.         |
|----------------------------------------|-----------------------------|------------------------------------------|----------------------------------|-----|--------------|
| PGA hydrogel                           | 0-100                       | 2.14                                     | NA                               |     | 1            |
| PVA/EMImAc/H <sub>2</sub> O/Mg(II)     | 0-60,                       | 2.61                                     | NA                               |     | 2            |
| hydrogel                               | 60-120                      | 1.69                                     |                                  |     | 2            |
|                                        | 5-50,                       | 1.27                                     | NA                               |     |              |
|                                        | 50-300,                     | 1.73                                     |                                  |     | 3            |
| VP/PP/ZP/Al <sup>3+</sup> hydrogel     | 300-500,                    | 2.46                                     |                                  |     | 5            |
|                                        | 500-700                     | 3.07                                     |                                  |     |              |
|                                        | 0-200,                      | 1.07                                     | NA                               |     |              |
| SSS-[BMIM]Cl hydrogel                  | 200-500,                    | 1.28                                     |                                  |     | 4            |
|                                        | 500-800                     | 1.76                                     |                                  |     |              |
|                                        | 0-500,                      | 1.17                                     | NA                               |     | 5            |
| PGB-LCNF@GP hydrogel                   | 500-1000                    | 3.24                                     |                                  |     |              |
| PVA/PA/NH <sub>2</sub> -POSS hydrogel  | 0-125                       | 3.44                                     | 220                              | NA  | 6            |
|                                        | 0-100,                      | 0.96                                     | -                                |     | 7            |
| PVA-CNF organohydrogel                 | 100-300                     | 1.57                                     | 130                              | NA  | 1            |
| SICH hydrogel                          | 0-300                       | 1.1                                      | 80                               | 200 | 8            |
|                                        | 0-30,                       | 0.55                                     | -                                |     |              |
| PAAm-Ferritin hybrid hydrogel          | 30-150,                     | 1.94                                     | 470                              | NA  | 9            |
|                                        | 150-300                     | 2.06                                     |                                  |     |              |
| PNA/PVP/TA/F <sup>3+</sup><br>hydrogel | 0-300                       | 3.61                                     | 265                              | NA  | 10           |
| TA@HAP NWs-PVA(W/EG)<br>hydrogel       | 0-350                       | 2.84                                     | 51                               | 50  | 11           |
|                                        | 0-200,                      | 1.128                                    | -                                |     |              |
| PAC-Zn organohydrogel                  | 200-400                     | 1.486                                    | 200                              | 1   | 12           |
|                                        | 300-500                     | 6.56                                     | _                                |     |              |
| PCP-8 hydrogel                         | 0-600                       | 0.9                                      | 310                              | 50  | 13           |
| PGBC-B<br>organohydrogel               | 0-700                       | 2.07                                     | 250                              | 1   | 14           |
|                                        | 0-65,                       | 0.57                                     | -                                |     |              |
| CNC/PAA hydrogel                       | 65-470,                     | 1.03                                     | 290                              | NA  | 15           |
|                                        | 470-850                     | 1.65                                     |                                  |     |              |
| PVA-CS-3PA-2 hydrogel                  | 0-900                       | 1.77<br>(2.6 after<br>being<br>remolded) | 50                               | 10  | This<br>work |

**Table S2.** A comparison on the strain sensing range, gauge factor and responsetime of this work with other hydrogel-based strain sensors.

\*NA = not available

## **References:**

- 1 C. Hu, Y. Zhang, X. Wang, L. Xing, L. Shi and R. Ran, ACS Appl. Mater. Interfaces, 2018, 10, 44000–44010.
- 2 Y. Liu, W. Wang, K. Gu, J. Yao, Z. Shao and X. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 29008–29020.
- 3 E. Feng, J. Li, G. Zheng, X. Li, J. Wei, Z. Wu, X. Ma and Z. Yang, *Chem. Eng. J.*, 2022, **432**, 134406.
- 4 X. Zhang, G. Zhang, X. Huang, J. He, Y. Bai and L. Zhang, *ACS Appl. Mater. Interfaces*, 2022, **14**, 30256–30267.
- 5 F. Lin, Y. Qiu, X. Zheng, Z. Duanmu, Q. Lu, B. Huang, L. Tang and B. Lu, *Chem. Eng. J.*, 2022, **437**, 135286.
- 6 L. Shao, Y. Li, Z. Ma, Y. Bai, J. Wang, P. Zeng, P. Gong, F. Shi, Z. Ji, Y. Qiao, R. Xu, J. Xu, G. Zhang, C. Wang and J. Ma, ACS Appl. Mater. Interfaces, 2020, 12, 26496–26508.
- 7 M. Li, D. Chen, X. Sun, Z. Xu, Y. Yang, Y. Song and F. Jiang, *Carbohydr. Polym.*, 2022, **284**, 119199.
- 8 A. Wang, Y. Wang, B. Zhang, K. Wan, J. Zhu, J. Xu, C. Zhang and T. Liu, *Chem. Eng. J.*, 2021, **411**, 128506.
- 9 R. Wang, W. Chi, F. Wan, J. Wei, H. Ping, Z. Zou, J. Xie, W. Wang and Z. Fu, ACS Appl. Mater. Interfaces, 2022, 14, 21278–21286.
- 10 Q. Pang, H. Hu, H. Zhang, B. Qiao and L. Ma, ACS Appl. Mater. Interfaces, 2022, 14, 26536–26547.
- 11 J. Wen, J. Tang, H. Ning, N. Hu, Y. Zhu, Y. Gong, C. Xu, Q. Zhao, X. Jiang, X. Hu, L. Lei, D. Wu and T. Huang, *Adv. Funct. Mater.*, 2021, **31**, 2011176.
- 12 Q. Li, J. Chen, Y. Zhang, C. Chi, G. Dong, J. Lin and Q. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 51546–51555.
- 13 Y. Nie, D. Yue, W. Xiao, W. Wang, H. Chen, L. Bai, L. Yang, H. Yang and D. Wei, *Chem. Eng. J.*, 2022, **436**, 135243.
- 14 J. Gu, J. Huang, G. Chen, L. Hou, J. Zhang, X. Zhang, X. Yang, L. Guan, X. Jiang and H. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 40815–40827.
- 15 W. Ma, W. Cao, T. Lu, Z. Jiang, R. Xiong, S. K. Samal and C. Huang, ACS Appl. Mater. Interfaces, 2021, 13, 58048–58058.