Polarization engineering of porous organic polymer for superior photocatalytic synthesis of disulfide and CO₂ reduction

Xiaoyan Huang,^a Yanling Lu,^a Guojiang Mao,^b Shiheng Yin,^c Bei long,^a Guo-Jun Deng,^a Atif Ali^d and Ting Song^a*

a Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China. b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China

c Analytical and Testing Center, South China University of Technology, Guangzhou 510640, P. R. China.

d Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.

*Corresponding author. E-mail: songtg@xtu.edu.cn

Computational methods

The first-principles calculations based on the Density Functional Theory (DFT) were performed using the Materials Studio software with CASTEP and DMol3 model. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional within the generalized gradient approximation (GGA) was employed to describe the exchangecorrelation energy. The energy cutoff for the plane wave basis expansion was set to 600 eV. The force on each atom was set as 0.03 eV/Å for convergence criterion. Slab model was constructed in a 4×4 supercell, with a vacuum layer of 20 Å in the z direction to avoid the interaction between layers. The sampling in the Brillouin zone was set with 3×3×1 by the Monkhorst-Pack method. The van der Waals interaction was considered by using DFT-D3 method.

Fig. S1. Thermogravimetric analysis results of AB (barbituric acid), HCCP (hexachlorocyclotriphosphazene), TBA (2-thiobarbituric acid), and DAP (2-Amino-4,6-dihydroxypyrimidine).

Fig. S2. N₂ adsorption-desorption isotherm of NBCP, SBCP and OBCP.

Fig. S3. UV–vis diffuse reflectance spectra measured from samples as indicated by the legends. Plot of $(ahv)^{1/2}$ vs hv.

Fig. S4. Mott-Schottky plots of (a) NBCP, (b) OBCP and (c) SBCP.

Fig. S5. (a) GC spectrum of 1,2-bis(4-(tert-butyl)benzyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S6. (a) GC spectrum of 1,2-bis(4-chlorobenzyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S7. (a) GC spectrum of 1,2-bis(4-methylbenzyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S8. (a)GC spectrum of 1,2-bis(2-chlorophenyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S9. (a) GC spectrum of 1,2-bis(4-methoxybenzyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S10. (a) GC spectrum of 1,2-bis(2-bromobenzyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S11. (a) GC spectrum of 1,2-bis(4-bromobenzyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S12. (a) GC spectrum of 1,2-bis(2,4-dichlorobenzyl)disulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S13. (a) GC spectrum of 1,2-dibenzyldisulfane. (b) MS spectrum from GC-MS and the NIST database (below).

Fig. S14. FT-IR spectra of OBCP sample before and after the stability test.

Fig. S15. XPS spectra of OBCP sample before and after the stability test.

Fig. S16. Control experiments of OBCP sample.

Fig. S17. GC-MS analysis of OBCP.

Fig. S18. Plausible route of photocatalytic CO₂ reduction.

Fig. S19. Reaction pathways associated to photoactivation of CO₂ molecules at OBCP surface.

Fig. S20. Free radical trapping experiment of OBCP.

Fig. S21. EPR spectra of O₂- in OBCP sample.

Computational Details

All computations were performed under the framework of Density Functional Theory (DFT) using the Gaussian 16 or MS software package of programs. In our calculation, the simplest possible repetitive unit consisting of single trithiocyanuric acid and single phosphonitrile was taken into consideration. Molecular geometries were optimized using B3LYP(g) and energy was calculated using B3LYP(g,d).

Atom	х	У	Z	
 P	9.74840000	4.81980000	3.13560000	
Ν	10.94900000	3.77270000	3.00150000	
Р	12.48840000	4.23310000	2.88680000	
Ν	12.78660000	5.79850000	3.03790000	
Р	11.62530000	6.87980000	3.06170000	
Ν	10.10750000	6.39080000	3.04030000	
Ν	13.17080000	3.77400000	1.50430000	
Ν	13.35020000	3.34470000	3.92920000	
Р	9.47940000	13.32820000	3.03060000	
Ν	10.72660000	12.32560000	3.19730000	
Р	12.22570000	12.86860000	3.18810000	
Ν	12.48300000	14.43370000	3.24070000	
Р	11.26560000	15.47640000	3.13550000	
Ν	9.76820000	14.89340000	3.22610000	
0	13.06980000	12.31520000	1.87900000	
0	13.06790000	12.25750000	4.46990000	
С	13.35620000	10.98410000	1.66600000	
С	13.36050000	10.92140000	4.63290000	
Ν	12.33840000	10.12450000	1.59890000	
С	12.74100000	8.84740000	1.62620000	
Ν	13.99490000	8.39750000	1.60540000	
С	14.90230000	9.38070000	1.66190000	
Ν	14.66180000	10.69370000	1.64340000	
Ν	12.34830000	10.05110000	4.63730000	
С	12.76090000	8.77750000	4.58460000	
Ν	14.01790000	8.33640000	4.61710000	
С	14.91610000	9.32960000	4.61870000	
Ν	14.66780000	10.64000000	4.68700000	
0	11.75390000	7.85970000	4.38330000	
Ν	16.22020000	8.93080000	4.43470000	
0	11.72250000	7.93580000	1.79340000	
Ν	16.19630000	8.95620000	1.84990000	

DFT-optimized geometry of NBCP (singlet).

Р	17.13280000	9.39780000	3.13710000	
Ν	18.37750000	8.41520000	3.13510000	
Р	19.87840000	8.98320000	3.05960000	
Ν	20.09190000	10.56700000	3.25540000	
Р	18.86560000	11.59010000	3.11120000	
Ν	17.38180000	10.97090000	3.17180000	
0	20.47990000	8.42370000	1.67550000	
0	20.84310000	8.23650000	4.12170000	
0	18.92350000	12.75060000	4.23880000	
0	19.14090000	12.43100000	1.76470000	
0	8.73570000	13.18250000	1.60800000	
0	8.33370000	12.80760000	4.04880000	
0	8.99440000	4.43800000	4.50910000	
Н	18.20860000	12.58900000	4.89360000	
Н	20.85290000	8.73260000	4.96900000	
Н	21.40560000	8.73070000	1.55300000	
Н	8.76090000	12.29390000	4.76950000	
Н	8.54870000	12.23670000	1.41240000	
Н	18.43890000	13.10690000	1.62870000	
Н	13.19310000	2.79400000	1.43420000	
Н	12.85590000	3.23940000	4.77150000	
Н	8.17970000	4.97720000	4.61840000	
0	8.55250000	4.54690000	2.07650000	
Н	8.70050000	5.07940000	1.26420000	
Ν	11.54430000	16.32350000	1.79480000	
Н	10.84680000	17.00460000	1.66760000	
Ν	11.38860000	16.64500000	4.24860000	
Н	10.88920000	16.38930000	5.05450000	
Н	12.33950000	16.81610000	1.19730000	
Н	12.13740000	17.44650000	4.07790000	
Н	14.38870000	3.17350000	3.57660000	
Н	14.07080000	4.12360000	0.95660000	
Н	16.88180000	8.39980000	5.15060000	
Н	16.90660000	8.68140000	1.04240000	

DFT-optimized geometry of OBCP (singlet).

Atom	X	у	Z	
P	9.74620000	4.82110000	3.13530000	
N	10.94600000	3.77290000	3.00530000	

Р	12.48580000	4.23160000	2.89080000
Ν	12.78540000	5.79700000	3.03970000
Р	11.62500000	6.87890000	3.06090000
Ν	10.10710000	6.39180000	3.03810000
0	13.16840000	3.76980000	1.50940000
0	13.34630000	3.34390000	3.93480000
Р	9.48050000	13.32680000	3.03360000
Ν	10.72840000	12.32440000	3.19750000
Р	12.22700000	12.86810000	3.18780000
Ν	12.48410000	14.43290000	3.23960000
Р	11.26620000	15.47540000	3.13700000
Ν	9.76930000	14.89180000	3.22930000
0	13.07170000	12.31390000	1.87930000
0	13.06980000	12.25770000	4.46990000
С	13.35800000	10.98330000	1.66650000
С	13.36170000	10.92200000	4.63380000
Ν	12.34020000	10.12330000	1.60020000
С	12.74290000	8.84580000	1.62590000
Ν	13.99700000	8.39640000	1.60250000
С	14.90480000	9.37980000	1.65400000
Ν	14.66370000	10.69280000	1.63720000
Ν	12.34910000	10.05190000	4.63770000
С	12.76030000	8.77770000	4.58180000
Ν	14.01740000	8.33570000	4.61220000
С	14.91660000	9.32830000	4.60980000
Ν	14.66890000	10.63900000	4.68190000
0	11.75280000	7.86110000	4.38150000
0	16.21960000	8.92840000	4.42530000
0	11.72490000	7.93390000	1.79190000
0	16.19910000	8.95650000	1.84100000
Р	17.13420000	9.39790000	3.12950000
Ν	18.37930000	8.41640000	3.12820000
Р	19.88010000	8.98590000	3.06080000
Ν	20.09100000	10.56960000	3.25890000
Р	18.86470000	11.59170000	3.11050000
Ν	17.38120000	10.97100000	3.16500000
0	20.48900000	8.42830000	1.67920000
0	20.84000000	8.23910000	4.12700000
0	18.91760000	12.75160000	4.23880000
0	19.14400000	12.43340000	1.76550000
0	8.73440000	13.18130000	1.61240000
0	8.33670000	12.80560000	4.05350000
0	8.98920000	4.44250000	4.50800000
Н	18.19980000	12.58970000	4.89150000

Н	20.84610000	8.73510000	4.97520000	
Н	21.41580000	8.73610000	1.56140000	
Н	8.76480000	12.29070000	4.77380000	
Н	8.54540000	12.23520000	1.41710000	
Н	18.44210000	13.10970000	1.62680000	
Н	13.19020000	2.78900000	1.44010000	
Н	12.85150000	3.23990000	4.77770000	
Н	8.17310000	4.98140000	4.61440000	
0	8.55210000	4.54760000	2.07450000	
Н	8.70110000	5.07980000	1.26140000	
0	11.54270000	16.32360000	1.79660000	
Н	10.84490000	17.00550000	1.67050000	
0	11.39060000	16.64310000	4.25080000	
Н	10.89170000	16.38720000	5.05770000	
H O H O H O H	8.17310000 8.55210000 8.70110000 11.54270000 10.84490000 11.39060000 10.89170000	4.98140000 4.54760000 5.07980000 16.32360000 17.00550000 16.64310000 16.38720000	4.61440000 2.07450000 1.26140000 1.79660000 1.67050000 4.25080000 5.05770000	

DFT-optimized geometry of SBCP (singlet).

Atom	Х	у	Z	
 P	9.46270000	4.78450000	3.11350000	
Ν	10.61710000	3.67480000	3.05020000	
Р	12.18000000	4.07440000	2.99350000	
Ν	12.54890000	5.64350000	3.07400000	
Р	11.42570000	6.76930000	3.04360000	
Ν	9.89360000	6.33530000	3.00170000	
S	13.14320000	3.42300000	1.23310000	
S	13.19540000	2.95130000	4.46210000	
Р	9.75330000	13.43000000	3.04910000	
Ν	10.90860000	12.31620000	3.15640000	
Р	12.45070000	12.71070000	3.14520000	
Ν	12.85520000	14.25000000	3.16270000	
Р	11.72400000	15.41080000	3.16400000	
Ν	10.17940000	14.96220000	3.28110000	
0	13.25150000	12.07350000	1.85080000	
0	13.24470000	12.05130000	4.43160000	
С	13.42480000	10.72630000	1.61090000	
С	13.42300000	10.69690000	4.61640000	
Ν	12.34850000	9.93620000	1.62970000	
С	12.66520000	8.63410000	1.57220000	
Ν	13.87250000	8.10640000	1.40460000	
С	14.86260000	9.02510000	1.34850000	
Ν	14.69240000	10.35780000	1.41940000	

Ν	12.33960000	9.91720000	4.59710000	
С	12.64880000	8.61320000	4.55020000	
Ν	13.85860000	8.07150000	4.63420000	
С	14.85630000	8.97690000	4.73470000	
Ν	14.69460000	10.31480000	4.75230000	
0	11.56880000	7.78280000	4.33350000	
S	16.50940000	8.30000000	4.75060000	
0	11.59560000	7.78050000	1.75330000	
S	16.52170000	8.36380000	1.27590000	
Р	17.41980000	9.25180000	3.03250000	
Ν	18.91280000	8.65250000	3.05630000	
Р	20.18380000	9.64080000	3.06850000	
Ν	19.91830000	11.20920000	3.30890000	
Р	18.46190000	11.85130000	3.11340000	
Ν	17.21330000	10.83720000	3.06880000	
0	20.97810000	9.32090000	1.70340000	
0	21.28280000	9.18090000	4.16470000	
0	18.12660000	12.92930000	4.27180000	
0	18.55970000	12.77760000	1.79960000	
0	8.96940000	13.39420000	1.64220000	
0	8.59000000	12.98770000	4.08180000	
0	8.64200000	4.46600000	4.46300000	
Н	17.40300000	12.56720000	4.83380000	
Н	21.13990000	9.67710000	5.00120000	
Н	21.79370000	9.86830000	1.64090000	
Н	8.98310000	12.41800000	4.78100000	
Н	8.66450000	12.48090000	1.43620000	
Н	17.69610000	13.21550000	1.61850000	
Н	12.68940000	2.14560000	1.37850000	
Н	12.16180000	3.07010000	5.34430000	
Н	7.84240000	5.03570000	4.52920000	
0	8.30110000	4.53930000	2.01180000	
Н	8.49460000	5.06000000	1.20040000	
S	12.19030000	16.51470000	1.42510000	
Н	11.13530000	17.35910000	1.60630000	
S	12.06990000	16.85240000	4.66340000	
Н	11.27720000	16.19400000	5.55710000	