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Experimental section

Material synthesis. 

Polycrystalline SnTe-xSb2Te3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) and Sn1-yCdyTe-
0.08Sb2Te3 (y = 0.02, 0.04, 0.05, 0.06, 0.07) were synthesized by vacuum hot-melting 
the stoichiometric amounts of high-purity Sn (99.99%), Te (99.999%), Cd (99.99%), 
Sb (99.99%). These mixtures are vacuum-sealed in quartz tubes, which are slowly 
heated to 1173 K in a furnace after 400 minutes, and then quenched directly in cold 
water after holding for 18 hours. The quenched samples were annealed at 873K for at 
least two days. The obtained ingot was ground into powder for hot pressing. Dense 
pellet samples were obtained by rapid hot pressing at 853 K for 30 min under a uniaxial 
pressure of ~55 MPa, whose density d measured by Archimedes method and had not 
less than 96% of the theoretical density (Table S1).

Table S1. Density of all SnTe-xSb2Te3 and Sn1-yCdyTe-0.08Sb2Te3 samples in this 
work.

Composition Measured Density 
(g cm-3)

Relative Density (%)

SnTe 6.398 97.40

SnTe-0.02Sb2Te3
6.292 98.06

SnTe-0.04Sb2Te3
6.271 97.07

SnTe-0.06Sb2Te3
6.270 97.06

SnTe-0.08Sb2Te3
6.257 96.86

SnTe-0.10Sb2Te3
6.254 96.81

Sn0.98Cd0.02Te-0.08Sb2Te3
6.261 96.92

Sn0.96Cd0.04Te-0.08Sb2Te3
6.321 97.85

Sn0.95Cd0.05Te-0.08Sb2Te3
6.279 97.20

Sn0.94Cd0.06Te-0.08Sb2Te3
6.289 97.35

Sn0.93Cd0.07Te-0.08Sb2Te3
6.315 97.76



S-3

Materials Performance Characterization 

The powder X-ray diffraction patterns were recorded with Cu Kα radiation. Scanning electron 
microscope (SEM) equipped with energy-dispersive spectroscopy (EDS) was used to characterize 
surface morphology and qualitative and quantitative analysis of composition. The electrical 
conductivity σ and Seebeck coefficient S were measured by CTApro measurement system (Beijing 
Cryoall Science and Technology Co., Ltd. China). The Hall coefficient, which was closely related 
to carrier concentration and mobility, was measured using the van der Pauw technique under a 
reversible magnetic field of 1.5 T. The thermal conductivity (κtotal) was calculated by κ=dCpD, 
where D is the thermal diffusivity measured by a laser flash technique with the Netzsch LFA467 
system (Fig. S6), Cp is the heat capacity estimated by Cp(kB/atom)=3.07+4.7(T/K-300)/10000.1, 2 
Ignoring the bipolar thermal conductivity (κbip), the lattice thermal conductivity (κl) was directly 
obtained by subtracting the electronic conductivity (κe) from the κtotal, the κe was calculated by the 
Wiedemann-Franz relationship (Fig. S8), κe =LT/ρ, where L is the Lorentz number.3 L was derived 
with the single parabolic band (SPB) model (Fig. S7).4

The first principle calculations were performed by utilizing the Perdew-Burke-Ernzerhof 
(PBE) formalism and generalized gradient approximation (GGA) implemented in Vienna ab initio 
simulation package (VASP) code. The plane-wave basis was truncated at the energy cutoff of 600 
eV.

Modeling study on electronic transport

The single parabolic (SPB) model: 5

The Seebeck coefficient S:

(S1)
S =

kb

e
[
(r + 5 2)Fr + 3 2(η)

(r + 3 2)Fr + 1 2(η)
- η]

where  is the reduced chemical potential, kB is the Boltzmann constant, e is the electron 
charge, r is the scattering factor.

The carrier concentration :𝑛𝐻

  (S2)
nH = 4π[

2m * kBT

h2
]3/2 F1 2

where m* is the density of state effective mass taking into account band degeneracy, h 
is the Plank’s constant, T is the absolute temperature.
The mobility H: 

(S3)
μH = μ0

F - 1/2

2F0
=

τ0e

m *

F - 1/2

2F0

where  is the relaxation time that is closely related to the energy in the case of acoustic 𝜏0
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phonon scattering:6 . Where Cl is a parameter determined 
𝜏0 =

ℎ4𝐶𝑙

8 2𝜋3𝐸𝑑𝑒𝑓
2𝑚 ∗ 𝑘𝑇3/2

by the combination of the elastic constant,7 Edef is a combination of deformation 
potentials for multivalley systems.8
The Hall factor A: 

(S4)
A =

3
2
F1 2(η)

F - 1 2

2F2
0

The Hall factor reflects the energy scattering mechanism and the anisotropy of the 
energy band. For the SPB model, anisotropy does not need to be considered.
The Lorenz number L:

(S5)
L =

κ2
B

e2

3F0F2 - 4F2
1

F2
0

In the equations above the integral  is defined by𝐹𝑗

(S6)
Fj(η) =

∞

∫
0

ξjdξ

1 + e(ξ - η)

The single Kane band model:

Assumed that the light band is nonparabolic and the heavy band is parabolic, SKB 
(single Kane band) model and SPB mode are applied for for light band and heavy band 
respectively. it should be noted that the rigid band approximation is adopted which 
assumes that the changing carrier concentration adjusts only the chemical potential 
position and not the shape or position of the bands.5

As for the single Kane band:4, 9, 10

The Seebeck coefficient S:

(S7)
S =

kB

e [F
1

1 - 2

F 0
1 - 2

- η]
The carrier concentration :𝑛𝐻

(S8)
nH =

1
3π

[
8m * kBT

h2
]3/2 F 0

3/2,0

The mobility H: 

(S9)
μH =

h4eCll

8π3m *
I (2m *

b kBT)3/2Edef
2

3F 0
1, - 2

F 0
3/2,0

Due to the anisotropy of both conduction and valence bands, the inertial effective mass 

, and the density of states effective mass m* are governed by the effective band mass 𝑚 ∗
𝐼
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of a single pocket along two directions m∥* and m⊥*:11

; . (S10)m * = N2/3
V m *

b = N

2
3
V(m * 2

⊥ m * 2
∥ )1/3

m *
I = 3(

2

m *
⊥

+
1

m *
∥

) - 1

where NV is the band degeneracy (NV1=4 for the light-mass valence band, NV2=12 for 
the heavy-mass valence band of SnTe. 12

The Hall factor A: 

(S11)
A =

3K(K + 2)

(2K + 1)2

F 0
1/2, - 4F 0

3/2,0

(F 0
1, - 2)2

where K=  (K=4, assumed T independent), which reflects the anisotropy of the 𝑚 ∗
∥ /𝑚 ∗

⊥

energy band.8
The Lorenz number L:

(S12)
L = (

kB

e
)2[

F 2
1, - 2

F 0
1, - 2

- (F
1

1, - 2

F 0
1, - 2

)2] 

In the equations above the integral  is defined by𝐹 𝑙
𝑚,𝑛

(S13)
F l

m,n =
∞

∫
0
( -

∂f
∂ε)εl(ε + βε2)m[(1 + 2βε)2 + 2]1/2dε

where  ( is the band gap) is the reciprocal reduced band gap, is the 
𝛽 =

𝑘𝐵𝑇

𝐸𝑔 𝐸𝑔

nonparabolicity parameter.

Relaxation Time Model for Carrier Scattering：13

    In heavily heterovalently doped semiconductors, acoustic phonon-dominated 
deformation potential scattering is often not the only dominant role in carrier scattering. 
Alloy scattering, polar scattering, ionized impurity scattering, and inter-valley 
scattering also play an important role. Herein, acoustic phonon scattering, polar 
scattering, alloy scattering and together with ionized impurity scattering, with the total 
relaxation time determined by Matthiessen's rule, are considered to understand the 
transport properties of Sb2Te3 alloying and Cd doping:

(S14)τ - 1
total = τ - 1

ac + τ - 1
po + τ - 1

al + τ - 1
ii

The relaxation time for acoustic phonon scattering based on deformation potential 
theory can be expressed:8

(S15)

τac(ε) =
πℏ4v2

lρNv

2

1
2m *

d
3/2(kBT)

3
2E 2

def

(ε + ε2β)
-

1
2(1 + 2βε) - 1[1 -

8β(ε + ε2β)

3(1 + 2βε)2
] - 1
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where  is the longitudinal velocity,  is the density.𝑣𝑙 𝜌

For SnTe, a typical polar molecule, carriers are also scattered due to the change in 
polarity caused by optical vibrations. At room temperature and above, polar scattering 
from optical phonons can be viewed as an elastic process whose relaxation time can be 
defined as:14

τpo(ε)

=
4πℏ2ε1/2N1/3

v

2

1
2m *

d
1/2(kBT)

1
2e2(ε - 1

∞ - ε - 1
0 )

(1 + εβ)

1
2(1 + 2βε) - 1{[1 - δln (1 +

1
δ)] -

2β(ε + ε2β)
(1 + 2βε)2

[1 - 2δ + 2δ2ln⁡(1 +
1
δ
)]} - 1

                             (S16)

where  and  are the high frequency and static dielectric constants, respectively.  𝜀∞ 𝜀0 𝛿

is a function of reduced carrier energy  defined as:𝜀

(S17)

δ(ε) =
e2m *

d

1
2N

2
3
v

2

1
2ε(kBT)

1
2πℏε∞

(1 + εβ) - 1F 0
1
2
, 1

The relaxation time of alloy disorder is mainly determined by the macroscopic uniform 
crystal structure changes caused by its alloying and doping atoms, which can be 
expressed as:15

(S18)

τal(ε) =
8ℏ4

3 2πΩx(1 - x)m *
b

3
2(kBT)

1
2E2

al

(ε + ε2β)
-

1
2(1 + 2βε) - 1[1 -

8β(ε + ε2β)
3(1 + 2βε)2] - 1

Where  is the volume per atom, x is the concentration ratio of the alloy atom, Eal is Ω
the alloy scattering potential which determines the magnitude of the alloy scattering.16, 

17

(S19)
τii(ε) =

4 2πε2
0m *

d
1/2(kBT)

3
2

NiiZ
2e4

ε3/2(1 + εβ)3/2(1 + 2βε) - 1[ln (1 + b) -
b

1 + b
] - 1

 (S20)

b =
23/2π2ε0ℏ(kBT)1/2

m *
d

1/2e2

ℇ
F

-
1
2

(η)

where N is amount of impurities per unit volume, Z represents the Z effective charges. 
    Therefore, the carrier mobility  can be expressed as: 𝜇
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(S21)

μ =
e

m *
I

∞

∫
0

( -
∂f
∂ε

)τtotal(ε + ε2β)3/2(1 + 2βε) - 1dε

∞

∫
0

( -
∂f
∂ε

)(ε + ε2β)3/2dε

 

The Seebeck coefficient S:

(S22)

S =
kB

e
(

∞

∫
0
( -

∂f
∂ε)τtotalε

3
2(ε + ε2β)3/2(1 + 2βε) - 1dε

∞

∫
0
( -

∂f
∂ε)τtotalε

1
2(ε + ε2β)

2
3(1 + 2βε) - 1dε

- η)

The Hall coefficient A:

(S23)

A =
3K(K + 2)

(2K + 1)2

∞

∫
0
( -

∂f
∂ε)τtotalε

3
2(1 + εβ)

3
2(1 + 2βε) - 2dε

∞

∫
0
( -

∂f
∂ε)τtotalε

3
2(1 + εβ)

3
2dε

(
∞

∫
0
( -

∂f
∂ε)τtotalε

1
2(ε + ε2β)3/2(1 + 2βε) - 1dε)2

And the Lorenz number L:

(S24)

L = (
kB

e
)2[

∞

∫
0
( -

∂f
∂ε)τtotalε

7
2(1 + εβ)

3
2(1 + 2βε) - 1dε

∞

∫
0
( -

∂f
∂ε)τtotalε

3
2(1 + εβ)

2
3(1 + 2βε) - 1dε

- (
∞

∫
0
( -

∂f
∂ε)τtotalε

5
2(1 + εβ)

3
2(1 + 2βε) - 1dε

∞

∫
0
( -

∂f
∂ε)τtotalε

3
2(1 + εβ)

2
3(1 + 2βε) - 1dε)2]

The two valence band model:

It should be noted that the relative positions of the Fermi level and the two valence 
bands need to be considered when using the two-band model. That is, the difference 
between the reduced chemical potentials corresponding to the two valence bands 

. 4, 10 And the total electrical conductivity:
∆ =

∆𝐸
𝑘𝐵𝑇

(S25)σ = σL + σΣ

The total Seebeck coefficient:

(S26)
S =

SLσL + SΣσΣ

σL + σΣ

The total Lorenz number:



S-8

(S27)
L =

LLσL + LΣσΣ

σL + σΣ

The total carrier concentration nH:

(S28)
nH =

[bnLH + nΣH]2

ALHb2nLH + AΣHnΣH

where b=4, that is suitable for PbTe/SnTe system.
The total Hall coefficient RH:

(S29)
RH =

σ2
LRLH + σ2

ΣRΣH

(σL + σΣ)2

The total Hall mobility :𝜇𝐻

(S30)μH = RHσ

Debye-Callaway Model Simulation
    According to the Debye-Callaway model, 18, 19 κL can be calculated by

(S7)
L =

KB

22υ(KB

ħ )3
/T

∫
0

(x)
x4ex

(ex - 1)2
dx

The integrand item in conjunction with the coefficient of the above equation is the 
spectral lattice thermal conductivity (κs), 20, 21 can be given by:

(S8)
s =

kB

22υ(kB

ħ )3(x)
x4ex

(ex - 1)2

Where  (with  and  respectively denoting the 𝑣 = 31/3(𝑣𝑙
‒ 3 + 2𝑣𝑡

‒ 3) ‒ 1/3 𝑣𝑙 𝑣𝑡

transverse and longitudinal sound velocities) is the average speed of phonon, x = ħ/kBT 

(with ω denoting the phonon frequency) is the reduced phonon frequency,  is Debye 

temperature, ħ is the reduced Planck constant,  is the Boltzmann constant, and tot is 𝑘𝐵

the total relaxation time. The phonon scattering pathways include Umkalapp (U) 
phonon scattering, normal process (N), point defects (PD), and others.The relevant 
phonon relaxation times are given by:
Umklapp phonon scattering and Normal process

(S9)
 - 1

U =
ħ22T

Mv2
e -  T

Normal process :𝜏 ‒ 1
𝑁
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 (S12)τ - 1
N = βτ - 1

U

Point defect phonon scattering

(S12)
 - 1

PD =
V0

42υ
4

where  is the average atomic mass, γ is the Grüneisen parameter,  is the ratio between 𝑀
normal process and Umklapp phonon scattering, V0 is the average atomic volume,  is 
the point defect scattering parameter. Remarkably, the disorder scattering parameter  Γ

can be derived from the model of Slack and by Abeles assuming ,22, 23 Γ = Γ𝑀 + Γ𝑆

where the scattering parameters  and  are due to mass and strain field fluctuations, Γ𝑀 Γ𝑆

respectively. The mass and strain fluctuation scattering parameter is given by: 

(S28)

ΓM =

n

∑
i = 1

cj(M̅i M̿)2f1
if

2
i[(M

1
i - M2

i) M̅i]
2

n

∑
i = 1

ci

(S29)

ΓS =

n

∑
i = 1

cj(M̅i M̿)2f1
if

2
iε[(r1

i - r2
i) r̅i]

2

n

∑
i = 1

ci

where n, cj, , , , ,  and ε are the number of sublattice, the relative 𝑀̅𝑖 𝑀̿ 𝑀𝑘
𝑖  𝑟𝑘

𝑖 𝑓𝑘
𝑖

degeneracies of the respective sites, the average atomic mass of the ith sublattice, the 
average atomic mass of the compound, the atomic mass of the kth atom of the ith 
sublattice, the atomic radius of the kth atom of ith sublattice, the fractional 
concentrations of kth atom of the ith sublattice and the lattice inharmonic parameter, 
respectively. In particular, the mass of the Sn vacancy is estimated to be 0, and the 
radius is 0.5-0.6 of the ionic radius of Sn.
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Fig. S1. Backscattered electron (BSE) images and corresponding elemental mappings (EDS) of 
carefully polished surfaces for (a) SnTe-0.08Sb2Te3 and (b) Sn0.94Cd0.06Te-0.08Sb2Te3.
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Fig. S2. Temperature dependence of (a, b) Hall coefficients, (c, d) carrier mobility and (e, f) carrier 
concentration for (a, c, e) SnTe-xSb2Te3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) and (b, d, f) Sn1-yCdyTe-
0.08Sb2Te3 (y = 0.02, 0.04, 0.05, 0.06, 0.07).
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Fig. S3. (a) Electronic band structures of Sn27Te27, Sn22V2Sb3Te27 and Sn21V2CdSb3Te27 supercells 
as a function of wave vector in the Brillouin zone; (b) Density of states (DOS) of Sn27Te27, 
Sn22V2Sb3Te27 and Sn21V2CdSb3Te27 supercells, V is the vacancy.

Fig. S4. Taking single-band transport as an example, the changes of (a) Seebeck coefficient S, (b) 
carrier mobility  and (c) Lorentz number L by carrier scattering mechanisms such as acoustic 𝜇𝐻
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phonon scattering, optical polar scattering, alloy scattering and ionized impurity scattering.

Fig. S5. Carrier distributions of SnTe L-band and -band in (a) non-converged and (b) converged 
states, the gray line represents 300 K, and the red line represents a higher temperature of 600 K.

Fig. S6. (a) Temperature dependent thermal diffusivity D for (a) SnTe-xSb2Te3 (x = 0, 0.02, 0.04, 
0.06, 0.08, 0.1) and (b) Sn1-yCdyTe-0.08Sb2Te3 (y = 0.02, 0.04, 0.05, 0.06, 0.07).

Fig. S7. (a) Temperature dependent Lorenz number L for (a) SnTe-xSb2Te3 (x = 0, 0.02, 0.04, 0.06, 
0.08, 0.1) and (b) Sn1-yCdyTe-0.08Sb2Te3 (y = 0.02, 0.04, 0.05, 0.06, 0.07).
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Fig. S8. Temperature dependent electronic thermal conductivity  for (a) SnTe-xSb2Te3 (x = 0, 𝜅𝑒

0.02, 0.04, 0.06, 0.08, 0.1) and (b) Sn1-yCdyTe-0.08Sb2Te3 (y = 0.02, 0.04, 0.05, 0.06, 0.07). 
 

Fig. S9. Temperature dependent power factor PF for (a) SnTe-xSb2Te3 (x = 0, 0.02, 0.04, 0.06, 0.08, 
0.1) and (b) Sn1-yCdyTe-0.08Sb2Te3 (y = 0.02, 0.04, 0.05, 0.06, 0.07). 

Fig. S10. The average thermoelectric figure of merit zTavg for (a) SnTe-xSb2Te3 (x = 0, 0.02, 0.04, 
0.06, 0.08, 0.1) and (b) Sn1-yCdyTe-0.08Sb2Te3 (y = 0.02, 0.04, 0.05, 0.06, 0.07) between 303K and 
853K. 

Table S2. Parameters used to calculate carrier transport of SnTe based on two band model.
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Paramaters Values

Combination of elastic constants Cl (Pa) 5.8×1010  

Ratio of the longitudinal to transverse band effective mass 

KL

4 4

Ratio of the longitudinal to transverse band effective mass 

K

1 4

Band gap Eg (eV) 0.054+4.2×10-4T 24

Energy offset ΔE (eV)

Band effective mass of VL  (m0)𝑚 ∗
𝑏

Band effective mass of V  (m0)𝑚 ∗
𝑏

Deformation potential of VL Edef (eV)

Deformation potential of V Edef (eV)

0.45-2.5×10-4T 25

𝑒
𝑙𝑔0.17 + 0.5𝑙𝑔

𝑇
300

1.92

35 (this work)

25 (this work)

Light valence Band degeneracy NL 4

heavy valence Band degeneracy N 12

Table S3. Parameters adopted in the Debye-Callaway Model Simulation.

Parameters Values

Longitudinal sound velocity  (m s-1) 𝜐𝐿 317126

Transverse sound velocity  (m s-1) 𝜐𝑇 122026

Sound velocity v (m s-1) 1967

Atomic mass Sn (kg) 1.97×10-25

Atomic mass Te (kg) 2.12×10-25

Atomic mass Sb (kg) 2.02×10-25

Atomic mass Cd (kg) 1.87×10-25

Atomic mass vacancy (kg) 0
Ionic radius Sn (Å) 0.93
Ionic radius Te (Å) 2.11
Ionic radius Sb (Å) 0.76
Ionic radius Cd (Å) 0.97

Ionic radius vacancy (Å)
50%
 𝑟

𝑆𝑛2 +

Grüneisen parameter γ 2.227-29

Point defect scattering parameters Γ (fitted)
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Temperature-dependent ratio of normal phonon scattering to Umklapp scattering 𝛽 2.3 (fitted)
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