One-Pot Simultaneous ARGET ATRP Strategy on Widening Long-Range Ion Channels to Facilitate Ion Conductivity for Alkaline Anion Exchange
\section*{Membrane Fuel Cell}
 Changzhou University, Changzhou, Jiangsu 213164, China
${ }^{\text {b }}$ School of Mechanical Technology, Wuxi Institute of Technology, Wuxi, Jiangsu 214121, China
${ }^{\text {cNational Experimental Demonstration Center for Materials Science and Engineering (Changzhou }}$ University), Changzhou, Jiangsu 213164, China
${ }^{d}$ College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Jiangsu 215123, China
${ }^{e}$ School of Rail Transportation, Soochow University, Suzhou Jiangsu 215123, China.
*E-mail: Fanghong Gong (fhgong@cczu.edu.cn); Wenzhong Ma (wenzhong-ma@cczu.edu.cn); Zheng
Cao (zcao@cczu.edu.cn); Ji Pan (jpan@suda.edu.cn)

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectra of VBC-Dim.

Fig. S2. FTIR spectra of PPO, BrPPO and PPO-PImIL.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectra of BrPPO.

Fig. S4. ${ }^{1} \mathrm{H}$ NMR spectra of PPO-PImIL.

Fig. S5 Semilogarithmic kinetic plots of ARGET ATRP under different $\operatorname{BrPPO} / \mathrm{Br} @$ CNTs feeding ratios.

Fig. S6. TEM image of $\operatorname{BrPPO} / \operatorname{Br} @$ CNTs-4wt\%.

Tab. S1. Chemical compositions and IECs of PPO-PImIL, PImIL@CNTs and hybrid AEMs under different $\operatorname{BrPPO} / \mathrm{Br} @ \mathrm{CNTs}$ feeding ratios

Sample	$\mathrm{VBC}-\mathrm{Dim} / \mathrm{BrPPO}^{a}$ (mole ratio\%)	\%PImIL content in grafted CNTs ${ }^{b}$	\% $\mathrm{Br}_{\text {reacted }}{ }^{\text {c }}$	Graft density ${ }^{d}$	Graft length ${ }^{\text {e }}$	IEC ($\mathrm{mmol} \mathrm{g}^{-1}$)			
						PImIL@CNTs (exp)	PPO-PImIL (theo)	Hybrid AEMs (theo)	Hybrid AEMs (exp)
BrPPO/Br@CNTs-1 wt\%	55.6	49.8	32	5.8	9.6	2.01	2.08	2.32	2.18
BrPPO/Br@CNTs-2 wt\%	54.8	48.2	31	5.6	9.8	1.94	2.06	2.27	2.24
BrPPO/Br@CNTs-4 wt\%	55.2	47.3	29	5.2	10.6	1.91	2.07	2.31	2.29
BrPPO/Br@CNTs-8 wt\%	53.3	45.9	28	5.0	10.7	1.85	2.04	2.13	1.88

${ }^{a}$ Based on ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Based on TGA. ${ }^{c}$ Based on ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Number of PImIL per 100 units in aromatic backbone, calculated from the mol $\%$ of $-\mathrm{CH}_{2} \mathrm{Br}$ in $\mathrm{BrPPO} 18 \%$) multiplied by the $\%$ of Br reacted. ${ }^{e}$ Average number of VBC-Dim units in each graft chain, calculated from the VBC-Dim/BrPPO mole ratio divided by graft density.

The graft amounts of VBC-Dim are estimated from the integral ratio of the aromatic protons of BrPPO backbone (denoted 'a', ' m ' and ' n ' in Figure S 4) to the aromatic protons of ionic side chains (denoted 'e' and ' f ' in Figure S 4) by equation S 1 . Where E, F, A, M and N represent the integrals of 'e', ' f ', 'a', ' m ' and ' n ' peaks, respectively.
$\frac{\mathrm{VBC}-\operatorname{Dim}}{\operatorname{BrPPO}}=\frac{E+F}{2(A+M+N)} \times 100 \%$
The reacted Br sites ($\mathrm{mol} \%$) during ARGET ATRP are calculated from integrals of peak ' P ' and ' l ' by equation S 2 . Where P and L represent the integrals of ' p ' and ' l ' peaks, respectively.
$\% \mathrm{Br}$ reacted $=\frac{2 P}{2 P+L} \times 100 \%$

Tab. S2. Alkaline stability of AEMs at $80^{\circ} \mathrm{C}$ after 24 h

Sample		Weight loss (\%)	
	1 M NaOH	2 M NaOH	4 M NaOH
ImPPO	4.9 ± 0.15	5.2 ± 0.21	5.8 ± 0.22
$\mathrm{BrPPO} / \mathrm{Br} @ \mathrm{CNTs}-1 \mathrm{wt} \%$	4.2 ± 0.08	4.4 ± 0.10	4.9 ± 0.16
$\mathrm{BrPPO} / \mathrm{Br} @ \mathrm{CNTs}-2 \mathrm{wt} \%$	3.3 ± 0.11	3.6 ± 0.13	4.0 ± 0.09
$\mathrm{BrPPO} / \mathrm{Br} @ \mathrm{CNTs}-4 \mathrm{wt} \%$	1.8 ± 0.12	2.0 ± 0.14	2.3 ± 0.17
$\mathrm{BrPPO} / \mathrm{Br} @ \mathrm{CNTs}-8 \mathrm{wt} \%$	2.1 ± 0.18	2.3 ± 0.11	2.7 ± 0.24

