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S1 Atomic force neural network

S1.1 Atomic-level structural descriptors
An atom’s local geometry is decomposed into numerical descriptors which are then mapped to a specific
atomic force component. These descriptors aim to capture unique pairwise aspects of an atom’s local atomic
environment by observing the changes in the atomic probability densities at various intervals around the
atom. The functional form of the atomic-level descriptors are defined as [1]:
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Here, ri and r j are the Cartesian coordinates of atoms i and j, ri j = |r j - ri|, rα
i j is the projection of r j - ri

onto any arbitrary direction α . [ψi,ψ j] represents the chemical identities of the interaction. k[i, j] represents
a given atomic feature for the specific [i, j] interaction. The summation runs over the neighbor list set { j}
of atom i, while 1
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which accounts for a smooth degradation in an atom’s contribution to the atomic force exerted on atom i,
has a cut-off radius Rcut chosen to be 7 Å. The gaussian functions are placed at various distances, ak[i, j] away
from atom i, with widths controlled by w. The ak[i, j] values are controlled manually by matching their peaks
with those observed in the radial distribution function of the material. Once the peaks have been matched,
the remaining distances are then filled in by placing equidistantly spaced features. The gaussian functions
are placed from 0.1 Å to 7 Å, to ensure that the underlying potential energy surface is appropriately sampled.
In this work, the final atomic feature vector, for a given atom i, along direction α will be given as:
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Figure S1: (a) Workflow of the atomic feature construction process for the titanium AFNN. The atomic
feature functional form and corresponding eometric damping function (top) for the case of a titanium atom
are shown. A visual depiction of the concatenated final feature vector for titanium and oxygen (bottom) are
provided. The current specie’s self interaction features are always included first, while the corresponding
hetergenous interactions are included after the self-tineraction terms. (b) Visual description of the AFNN
architecure is shown. The entire concatenated feature vector is fed into the AFNN, along with a bias term.
This information is passed through several hidden layers, culminating in the prediction of a particular atomic
force component. The example shown here is for the case of titaium.

S1.2 Model Construction
The Atomic force neural network (AFNN) employs a feature set containing self-interaction and hetergenous
interaction terms [1]. Each term includes 48 gaussian functions, with means spaced 0.14375 Å apart as they
move away from an atom’s center. The first gaussian is palced 0.1 Å away from an atom’s center. The
width of each gaussian was set uniformly at 0.2 Å. The same feature set was used for both chemical species
studied in this work. The final feature vector contained 96 features, as it is a concatenation of interaction
terms. Figure S1 provides a visual depiction of the functional form used to calculate the feature vectors, as
well as the interaction term concatenation process.

Table S1 provides technical information regarding the neural network artchitectures used for the Ti and
O AFNNs. Figure S1 (b) also provides a visual description of the AFNN setup. For both Ti and O AFNNs,
96 features were fed into the input layer of the neural network, along witha single bias term. The input layer
was connected to a hidden layer containing 192 neurons and a bias node. A second, identical hidden layer
was connected to the second layer, followed by an final expanded layer containing 768 neurons. These 768
neurons were summed together linearly to predict the atomic force component. The artchitecture employed
here was identical between the chemical specie’s respective models.
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Table S1: Neural network architecture for the oxygen and titanium AFNNs. The number of layers provided
does not include the input layer.

Chemical Identity # Layers # Neurons
Ti 3 192, 192, 768
O 3 192, 192, 768
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Figure S2: (left) Atomic forces for the training (top) and validation (bottom) sets for titanium force pre-
diction, shown against the corresponding DFT predictions. (right) Atomic forces for the training (top) and
validation (bottom) sets for oxygen force prediction, shown against the corresponding DFT predictions.

The final mathematical form of the NN is expressed in matrix form as:

#»u (1)(i) =
#»
V i ∗ ŵ(0,1) (3)

#»u (n)(i) =
#»
f ( #»u (n−1)(i))∗ ŵ(n−1,n)+b(n−1,n) ∋ n > 1 (4)

Here, #»u (n) represents a given set of neurons for a particular layer n, with n = 1 representing the input
layer.

#»
V i represents the atomic feature vector used for a particular atom i. w(n−1,n) is the weight matrix

of size (Mn−1 x Mn), where Mn is the number of neurons is a given layer n. As mentioned previously,
#»
f = ex−e−x

ex+e−x . b(n−1,n) represents the bias term associated with a given neuron, outside of the input layer. The

final layer used to predict a given atomic force component, is given as fi = blast +∑
Mlast
m ulast

m (i).

S1.3 Prediction of atomic forces
Figure S2 shows parity plots for the AFNN and density functional theory (DFT) predicted atomic forces for
the DFT-generated reference data. The top plots show the force predictions on the training sets of Ti and
O, while the bottom plots provide forces for the validation sets. Good overall agreement is shown for both
species, though a larger spread exists for the case of oxygen. Detailed statistics used to validate the AFNN
can be found in Table S2
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Table S2: Statistics for the atomic force preditions, suing the AFNN, compared to DFT. RMSE indicates the
root mean square error, STD is the standard deviation, and KS represents the the p-value from a Kolmogorov-
Smirnov [2] test.

Element Data Set RMSE ( eV
Å2

) STD ( eV
Å2

) KS

Ti
Training 0.15 0.16 0.97

Validation 0.17 0.17 0.95
O

Training 0.34 0.32 0.91
Validation 0.38 0.38 0.9

S1.4 Dynamic properties of TiO2

Mean square displacements (MSD) were calculated using classical molecular dynamics (MD) and ab intio
MD (AIMD). Classical MD simulations were performed in LAMMPS [3] using the AFNN. Each chmical
species was tracked over the course of the simulation. Time was broken into windows (shifted initial tem-
poral starting points) to allow for a smoother resulting MSD. A fickian diffusion model [4] was used to
extract the self-diffusion constants from the resulting MSDs. Figure ?? shows the MSDs and corresponding
self-diffusion constants for both Ti and O, showing good agreement between DFT and the AFNN.

S1.5 Structural properties of non-stoichiometric TiO1.88

Time-averaged radial distribution function (RDF) for the AFNN, and static RDF for DFT, were calculated
to show the structural agreement between the AFNN and DFT for the case of TiO1.88. Results can be found
in Fig. S4. The AFNN predicts a slight shift to the right in the first peak of the RDF, correpsonding to
Ti-O interactions. This shift is primarily due to a small shift to the left of the O-O peak, indicating that
oxygen atoms are slightly closer together in the AFNN systems. However, it should be noted that the AFNN
simulations cover a much larger region of the TiO1.88 phase space than DFT, which only contain a single
snapshot. Figure S4 shows the RDF predictions for the AFNN and DFT,decomposed into O-O, Ti-O, and
Ti-Ti interaction curves.

S1.6 Graph characterization of amorphous phase space
The GCN is described by an adjacency matrix, with matrix elements defined as:

Gi− j
ki,k j

=
1

dki,k j

∋ dki,k j ≤ Rc (5)

Here, i and j represent the chemical species of the atoms contained in the GCN. ki and k j are the atomic
indices of a particular atom, from chemical specie i and j respectively. dki,k j is defined as the l2-norm
between two atoms. Rc is the cutoff radius specified when constructing the GCN. Each matrix element,

1
dki,k j

, represents the weight of a given edge for a specific pair of adjacent nodes in the graph. The degree of

each node is defined as the sum of the elements in a node’s edge set. The degree sets are then fed into the
scalar graph order parameter (SGOP) [5] scheme for the final characterization of the atomic environments.
In this work Ti-O GCNs are used to classify the amorphous titania phase space. The SGOP functional form
is defined as:

θi− j,Rc =
S

∑
s

(
Ds

∑
m

P(dm) logb P(dm)+dmP(dm)

)3

(6)

Here, i and j represent the chemical identities of the atoms contained in the GCN. Rc is the cutoff radius
specified when constructing the GCN. We make the assumption that a particular GCN is disconnected, and
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Figure S3: (left) Mean square displacement of titanium atoms at 2550K, plotted against time, shown in
femtoseconds, for AFNN MD (blue) and AIMD (red) simulations. (right) Mean square displacement of
oxygen atoms at 2550K, plotted against time, shown in femtoseconds, for AFNN MD (blue) and AIMD
(red) simulations. Inserted values indicate the corresponding diffusion constant, calculated from the slope
of the MSD.
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Figure S4: Molecular dynamics derived time-averaged pair-correlation function of amorphous TiO1.88 at
T=2250K, for both DFT and the AFNN. The pair-correlation function is decomposed based on chemical
species interactions (colors). The AFNN is shown as the solid line, while DFT is given as a dashed line.
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Figure S5: (a) Atomic-level structure of amorphous TiO2 with red atoms representing oxygen and blue
atoms representing titanium. (b) Graph coordination networks of (a) at various cutoff distances. Colors
are relative to the smallest vertex degree within the graph, with purple representing the smallest degree and
blue representing the largest degree. One can see that as the graph cutoff is increased, the GCN becomes
increasingly interconnected and chaotic, providing a good indication of the local environments at various
cutoff radii.

that the underlying network exists as a set of subgraphs, S, with s indexing a particular subgraph. Note that
in the event a GCN is fully connected the outer sum disappears and no further changes are required to the
formalism. Ds is the set of unique node degrees in a subgraph, with Pdm being the probability of a given
degree, dm, occurring in the subgraph. A Vector Graph Order Parameter (VGOP) [5] is then assembled
from a list of SGOP values, calculated using a cutoff radius set of 1.75Å,2.0Å,2.25Å,2.5Å,2.75Å,3.0Å,
which were chosen based on the profile of the first Ti-O peak in the radial distribution function. Principal
component analysis [6] (PCA) is used to reduce the number of features in the VGOP and allow for the
visual inspection of the underlying data. Z-score normalization [7] is used to normalize the VGOPs to aid
in the PCA decomposition. In this work the first two principal components comprised at least 95% of the
underlying variance, and therefore the remaining components were discarded.

As discussed in the main text, the 1944-atom trajectories were used to explore the configuration space
of the amorphous phase. Four stoichiometries were considered for the case of TiOx (x = 2.0, 1.95, 1.9,
1.85), to gauge how the structural space changes as a function of oxygen concentration. Figure S6 shows the
VGOP PCA decomposition for all cases considered in this work. The red points in Figure S6 correspond to
the centroid of each cluster, which is calculated as the average x and y coordinate over all points in a given
stoichiometry. The location of the red points corresponds to the black points shown in Figure 5 (b) in the
main text. A subset of the total dataset was used in Figure S6 to give the reader a better idea of how the
majority of each phase’s points radially extend away from the cluster’s centroid.

S2 DFT Binding Energies

S2.1 96-atom unit cell
Binding energy distributions are shown for the non-stoichiometric case of TiO1.88 in Fig S7. Binding energy
distributions are nearly identical between TiO1.88 and TiO2, indicating that the concentration of oxygen in
the system plays little-to-no role in the hydrogen insertion energetics, at least for the cases examined in this
work.
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Figure S6: Decomposed PCA reduction for the amorphous phase space, as characterized using VGOP. Each
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points shown here represent approximately 25% of the total amount of data, which is reduced here for
visualization purposes.
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Figure S7: (a) Histograms of the hydrogen binding energies for the various CN environments. Values
shown here are the absolute number of samples, signifying the significant reduction in data set size for 4F
environments. Values are color coded based on the CN environment. The dashed vertical lines indicate the
mean for the distributions. (b) Fitted hydrogen binding energies for TiO1.88. The distributions are colored
according to the coordination number of the particular oxygen site. Here, the x-axis represents the binding
energy, while the y-axis represents the probability of that binding energy occurring with respect to the
number of environments for that CN type. The dashed black line represents the hydrogen binding energy
in crystalline rutile. Inserted images in (a) show the oxygen environments encountered by hydrogen in the
amorphous TiO1.88 phase space.
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Figure S8: Histograms of the hydrogen binding energies for the various CN environments. Values shown
here are the absolute number of samples, signifying the significant reduction in data set size for 4F environ-
ments. Values are color coded based on the CN environment. Here, the x-axis represents the binding energy.

S2.2 216-atom unit cell
Binding energy distributions are shown for the 216-atom unit cell systems of TiO2 in Fig S8. 216-atom
systems are taken from the DFT training data. While the number of binding energies represented here is
significantly less than that of the 96-atom case, due to the cost of performing DFT on 216-atom unit cells,
a trend does emerge for the 216-atom case in which binding energies less than -2 eV are not seen, while
there exist many such configurations for 96-atom structures. While this may be due to the limited number
of samples in the 216-atom case, it may be possible that such an effect is due to the hydrogen concentration,
however we do not examine this in detail in this work.

S3 Experimental Characterization
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Figure S9: Experimental 17O solid-state NMR of synthesized amorphous TiO2 powder. The spectrum was
referenced to tap water. The asterisks denote the sidebands. The synthesis procedures, phase, and stoichiom-
etry characterizations for the powdered TiO2 are given in supplementary information.

Figure S10: TEM imaging and XRD spectra of synthesized TiO2 powder. The synthesized TiO2 powders
aggregates into nanometer scale clusters and are amorphous phase.
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Figure S11: XPS spectra for the examination of chemical species and stoichiometry: (a) Ti 2p3/2 and Ti
2P1/2 peaks that corresponding to TiO2. The stoichiometry of Ti oxide is 2 and is in align with the RBS
results. (b) O 1s peak corresponding to OH- and O= groups. (c) C 1s peak corresponding to -C=O, C-O and
C-H groups where were sourced from the precursor for TiO2 synthesis. The atomic ratio of O/Ti is about
2.6, which is higher than 2 in TiO2. The extra oxygen is contributed by the OH-, C-O, and -C=O groups.

Figure S12: Rutherford backscattering spectra from TiOx film. Symbols are experimental points, while solid
lines are results of RUMP-code simulations. For clarity, only every 15th experimental point is depicted. The
position of 16O, and 48Ti are peaks are marked by arrows. The best fit to the experimental data is obtained
with O/Ti = 2.
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