Supporting Information

Ultrastable Hydrated Vanadium Dioxide Cathodes for High-Performance Aqueous Zinc Ion Batteries with H⁺/Zn²⁺ Co-insertion Mechanism

Xiudong Chen,^{a,b,‡,*} Xiesen Hu,^{b,‡} Yaoyao Chen,^b Xiaohua Cao,^{a, *} Yan Huang,^{b,*} Hang Zhang,^c Jin-Hang Liu,^a Yawei Wang,^a Shu-Lei Chou,^{c, *} and Dapeng Cao^{b,*}

^a School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China
E-mail: chenxd@jju.edu.cn,caojimmy@126.com
^b State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
E-mail: huangyan@mail.buct.edu.cn, caodp@mail.buct.edu.cn
^c Institute of Carbon Neutralization College of Chemistry and Materials Engineering

 ^c Institute of Carbon Neutralization College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
 E-mail: <u>chou@wzu.edu.cn</u>

Fig. S2 XPS full spectra of a) $VO_2 \cdot xH_2O$ and b) $(NH_4)_2V_{10}O_{25} \cdot 8H_2O$.

Fig. S3 XPS spectrum of the $(NH_4)_2V_{10}O_{25}\cdot 8H_2O$ corresponding high resolution XPS spectra of a) V 2p, b) O 1s, and c) N 1s.

Fig. S4 FTIR spectrum of the $(NH_4)_2V_{10}O_{25}$ ·8H₂O.

Fig. S5 TGA curve of the $VO_2 \cdot xH_2O$ under O_2 atmosphere.

Fig. S6 HRTEM images of the $(NH_4)_2V_{10}O_{25}$ ·8H₂O

Fig. S7 The lattice spacing determination of $VO_2 \cdot xH_2O$: a) HRTEM image, b) lattice fringes of HRTEM image, c) the lattice spacing (~0.62nm) of ten lattice fringes. In order to calculate the change of d value during cycling, ten lattice fringes were measured.

Fig. S8 HAADF-STEM images with EDS mapping of the $(NH_4)_2V_{10}O_{25}$ ·8H₂O.

Fig. S9 a) The CV curves of $(NH_4)_2V_{10}O_{25}\cdot 8H_2O$ at 0.1 mV s⁻¹. b) Charge- discharge curves of $(NH_4)_2V_{10}O_{25}\cdot 8H_2O$ for the first three cycle at 1 A g⁻¹.

Fig. S10 The Nyquist plots for $VO_2 \cdot xH_2O$ and $(NH_4)_2V_{10}O_{25} \cdot 8H_2O$ cathode after the first cycles

Fig. S11 a) CV curves of $(NH_4)_2V_{10}O_{25} \cdot 8H_2O$ in 2 M Zn $(CF_3SO_3)_2$ electrolyte at various scan rates from 0.2 to 1.0 mVs⁻¹. b) log(*i*) versus log(*v*) curves of cathodic and anodic peak.

Fig. S12 a) Discharge and charge GITT profile of $(NH_4)_2V_{10}O_{25}\cdot 8H_2O$ for the first cycle. b) Diffusivity coefficient at different discharge and charge states during GITT measurement.

Fig. S13 FESEM images of the holey $VO_2 \cdot xH_2O$ electrode at various cycled states: a) fully discharged to 0.2 V and b) fully charged to 1.6 V in the first cycle.

atom	Х	У	Z	Occ.	U
V0	0.29822	0.30782	0.26806	1	0.01
V1	0.69665	0.69507	0.72462	1	0.01
V2	0.3988	0.3988	0.68529	1	0.01
V3	0.6012	0.6012	0.31471	1	0.01
O4	0.33141	0.39982	0.00623	1	0.01
O5	0.64554	0.63362	0.99449	1	0.01
O6	0.23787	0.23787	0.64901	1	0.01
O7	0.76213	0.76213	0.35099	1	0.01
08	0.46035	0.46558	0.30358	1	0.01
09	0.55199	0.57209	0.63651	1	0.01
O10	0.14904	0.09801	0.29463	1	0.01
011	0.86531	0.86531	0.70082	1	0.01

Table S1. Detailed structural information on the VO₂·xH₂O sample after Rietveld refinement. Monoclinic, space group C2/m(12), a=6.296112 Å, b=6.297671 Å, c=6.427364 Å,

Table S2. Electrochemical properties compared between VO ₂ ·xH ₂ O and previously reported
VO ₂ materials (IRC: initial reversible capacity, mAh g ⁻¹ ; RRC: retained reversible capacity,
mAh g ⁻¹ ; CN: cycle number; CD: current density, A g ⁻¹).

Composite	IRC	RRC	CN	CD	Reference	
	302	376	1	200	This work	
VO ₂ ·xH ₂ O	283	289	5	2000		
	197	206	15	8000		
holey C@VO.	386.9	345.8	0.2	100	1	
	332	280	5	600		
RGO/VO ₂	242	240	1	1000	2	
VO ₂ (B)/RGO	~240	216	5	1600	3	
VO	~160	~220	0.5	350	1	
vO ₂	~105	~100	5	10000	4	
nsutite_type VO	314.4	310	1	100	5	
	50	163.5	5	5000	J	
Na ⁺ doning VO.	397	301	0.2	110	6	
	156	118	12	3000		
VO ₂ @NC	269.3	268.5	10	2500	7	
VO ₂ ·0.45H ₂ O	200	140	5	3000	8	
β-VO ₂ /CNTs	205	165	3	5000	9	

References:

 M. Yang, D. Ma, H. Mi, X. Yang, Y. Wang, L. Sun and P. Zhang, A unique morphology and interface dualengineering strategy enables the holey C@VO₂ cathode with enhanced storage kinetics for aqueous Zn-ion batteries, *J. Mater. Chem. A* 2021, 9, 8792-8804.
 X. Dai, F. Wan, L. L. Zhang, H. M. Cao and Z. Q. Niu, Freestanding graphene/VO₂ composite films for highly stable aqueous Zn-ion batteries with superior rate performance, *Energy Storage Mater.* 2019, 17, 143-150.

3 F. Cui, J. Zhao, D. Zhang, Y. Fang, F. Hu and K. Zhu, VO₂(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries, *Chem. Eng. J.* 2020, **390**, 124118.

4 T. Y. Wei, Q. Li, G. Z. Yang and C. X. Wang, An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide, *J. Mater. Chem. A* 2018, **6**, 8006-8012.

5 Y.-Y. Liu, T.-T. Lv, H. Wang, X.-T. Guo, C.-S. Liu and H. Pang, Nsutite-type VO₂ microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries, *Chem. Eng. J.* 2021, **417**, 128408.

6 Y. Liu and X. Wu, Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity, *Nano Energy* 2021, **86**, 106124.

7 T.-T. Lv, X. Luo, G.-Q. Yuan, S.-Y. Yang and H. Pang, Layered VO₂@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries, *Chem. Eng. J.* 2022, 428, 131211.

8 K. Zhu, T. Wu, S. Sun, W. van den Bergh, M. Stefik and K. Huang, Synergistic H^+/Zn^{2+} dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO₂ cathode for aqueous Zn-ion batteries, *Energy Storage Mater.* 2020, **29**, 60-70.

9 X. Fan, X. Wen, Y. Tang, W. Zhou, K. Xiang and H. Chen, β -VO₂/carbon nanotubes coreshelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries, *Electrochim. Acta* 2021, **400**, 139425.