Supporting Information

In situ surface-trap passivation of CuBi₂O₄ photocathodes for unbiased

solar water splitting

Yingfei Hu,^{ab} Jun Wang,^a Huiting Huang,^{ac} Jianyong Feng,^{*ac} Wangxi Liu,^a Hangmin Guan,^b Lingyun Hao,^b Zhaosheng Li,^{*ac} and Zhigang Zou^a

^aCollaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, China

^bSchool of Materials Engineering, Jinling Institute of Technology, 99 Hongjing Avenue, Nanjing 211169, China

^cCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

Corresponding author. E-mail: fengjianyong@nju.edu.cn (Jianyong Feng) Corresponding author. E-mail: zsli@nju.edu.cn (Zhaosheng Li)

Figure S1. XRD patterns of $CuBi_2O_4$ films with different amounts of Mg (0, 1%, 3%, 5%, 7%, 10%).

Figure S2. XRD pattern of MgO prepared by directly calcination of the magnesium precursor.

Figure S3. XPS spectra of O 1s orbits in $CuBi_2O_4$ and $Mg-CuBi_2O_4$ samples.

Figure S4. SEM images of (a) $CuBi_2O_4$, (b) Mg-CuBi_2O_4 Films and EDS elemental mappings of the Mg-CuBi_2O_4 sample.

Figure S5. (a) TEM, (b) SAED, and (c) HR-TEM images of $CuBi_2O_4$.

Figure S6. TEM image and EDS elemental mappings of the Mg-CuBi $_2O_4$ sample (scale bar: 200 nm)

Figure S7. (a) Mott–Schottky plots of CuBi₂O₄ and Mg-CuBi₂O₄ photocathodes. Electrochemically active surface areas (ECSA) measurements: cyclic voltammetry (CV) curves of (b) CuBi₂O₄ and (d) Mg-CuBi₂O₄ photocathodes by various scan rates (20–160 mV/s); double-layer capacitance (C_{dl}) of (c) CuBi₂O₄ and (e) Mg-CuBi₂O₄depended by the difference between J_a and J_c values. (f) Mott–Schottky plots which have been corrected with ECSA data.

Figure S8. Schematic diagrams of the energy band of $CuBi_2O_4$ photocathodes: (a) bare $CuBi_2O_4$; (b) Mg- $CuBi_2O_4$.

Figure S9. I–t curves of $CuBi_2O_4$ and $Mg-CuBi_2O_4$ photocathodes.

Figure S10. XRD patterns of Mg-CuBi₂O₄ photocathode before and after stability test.

Figure S11. SEM images of Mg-CuBi $_2O_4$ photocathode before and after stability test. (Several MgO particles are marked by red circles.)

Figure S12. *J*–V curves of a single Mo:BiVO₄ photoanode and a single $CuBi_2O_4$ photocathode.

Photocathode structure	Electrolyte	Onset potential	Photocurrent	Ref.
FTO/CuBi ₂ O ₄ /TiO ₂ /Pt	0.1 M NaOH	$1.2 V_{\text{RHE}}$	–0.35 mA⋅cm ⁻²	1
			at 0.6 V _{RHE}	
FTO/Ag- CuBi ₂ O ₄	0.5 M Na ₂ SO ₄ ; pH=6.6	$1.05 V_{RHE}$	–0.071 mA·cm ⁻²	2
SMRs/NGQDs			at 0.3 V_{RHE}	
FTO/CuBi ₂ O ₄ (Rapid thermal	0.3 M K ₂ SO ₄ /0.2 M	$1.2 V_{\text{RHE}}$	–0.38 mA·cm ⁻²	3
processing)	phosphate buffer		at 0.6 V _{RHE} (with	
	solution; pH=7		H ₂ O ₂)	
FTO/O _v /CuBi ₂ O ₄ /Zn-CuBi ₂ O ₄	0.3 M K ₂ SO ₄ /0.2 M	$1.0 V_{RHE}$	–0.6 mA·cm ^{−2}	4
	phosphate buffer		at 0.3 V _{RHE}	
	solution; pH=6.65			
FTO/CuO/CuBi ₂ O ₄	0.5 M Na ₂ SO ₄ ;	$1.0 V_{\text{RHE}}$	–0.9 mA·cm ^{−2}	5
	pH = 7		at 0.1 V_{RHE}	
FTO/CuO/CuBi ₂ O ₄	0.1 M NaOH	$1.12 V_{\text{RHE}}$	−1.49 mA·cm ⁻²	6
	; pH=13		at 0.6 V_{SHE}	
FTO/CuBi ₂ O ₄ /Pt	0.2 M K ₂ HPO ₄ /0.2 M	$1.0 V_{\text{RHE}}$	–0.5 mA·cm ⁻²	7
	KH ₂ PO ₄ /0.3 M K ₂ SO ₄		at 0.4 V_{RHE}	
FTO/nanoCuBi ₂ O ₄	0.1 M NaOH	$1.05 V_{SHE}$	–0.23 mA·cm ^{−2}	8
			at 0.4 V_{SHE}	
FTO/Mg-CuBi ₂ O ₄	KB _i (KOH: 0.2 M;	$1.15 V_{RHE}$	–0.2 mA·cm ⁻²	This
	H ₃ BO ₃ : 0.4 M);		at 0.7 V _{RHE}	work
	pH=9.2			

Table S1. Summary of various CuBi₂O₄ photocathodes for PEC water reduction.

Table S2. Comparison of $CuBi_2O_4$ and other photocathodes for PEC water reduction.

Photocathode structure	Electrolyte	Onset potential	Photocurrent	Ref.
MoS₂-n⁺p Si	0.5 M H ₂ SO ₄ ; pH=0	0.35 V _{RHE}	−17 mA·cm ⁻²	9
			at 0 V_{RHE}	
$FTO/Cu_2O/Ga_2O_3/TiO_2/RuO_x$	0.5 M Na ₂ SO ₄ /0.2 M	$1.0 V_{\text{RHE}}$	−10 mA·cm ⁻²	10
	phosphate solution;		at 0 V_{RHE}	
	pH=5			
FTO/CuO/Pd	0.2 M H ₂ BO ₃ ⁻ /H ₃ BO ₃ ;	$0.1 V_{SCE}$	–0.8 mA·cm ^{−2}	11
	pH=9.2		at –0.3 V_{SCE}	
Mo glas/Cu₂ZnSnS₄	0.2 M Na ₂ HPO ₄ /	0.8 V _{RHE}	–11.1 mA·cm ⁻²	12
/CdS/In ₂ S ₃ /Pt	NaH ₂ PO ₄ ; pH=6.5		at 0 V_{RHE}	
FTO/CuFeO ₂	1 M NaOH;	$0.98 V_{RHE}$	–0.9 mA·cm ^{−2}	13
	pH=13.5		at 0.4 V_{RHE}	
FTO/Mg-CuBi ₂ O ₄	KB _i (KOH: 0.2 M;	$1.15 V_{RHE}$	–0.2 mA·cm ⁻²	This
	H ₃ BO ₃ : 0.4 M);		at 0.7 V_{RHE}	work
	pH=9.2			

References

- 1. X. Zhu, Z. Guan, P. Wang, Q. Zhang, Y. Dai, B. Huang, *Chinese J. Catal.*, 2018, **39**, 1704-1710.
- 2. C. Ma, D. -K. Ma, W. Yu, W. Chen, S. Huang, Appl. Surf. Sci., 2019, 481, 661-668.
- R. Gottesman, I. Levine, M. Schleuning, R. Irani, D. Abou-Ras, T. Dittrich, D. Friedrich, R. Krol, Adv. Energy Mater., 2021, 11, 2003474.
- 4. S. Wei, C. Wang, X. Long, T. Wang, P. Wang, M. Zhang, S. Li, J. Ma, J. Jin, L. Wu, *Nanoscale*, 2020, **12**, 15193-15200.
- 5. S. Pulipaka, N. Boni, G. Ummethala, P. Meduri, J. Catal., 2020, 387, 17-27.
- 6. S. A. Monny, L. Zhang, Z. Wang, B. Luo, M. Konarova, A. Du, L. Wang, *J. Mater. Chem. A*, 2020, **8**, 2498-2504.
- 7. S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. van de Krol, *Chem. Mater.*, 2016, **28**, 4231-4242.
- 8. C. -Y. Lin, S. -Y. Lin, M. -C. Tsai, C. -H. Wu, Sustain. Energy Fuels, 2020, 4, 625-632.
- 9. J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, T.F. Jaramillo, Adv. Energy Mater., 2014, 4, 1400739.
- 10. L. Pan, J. H. Kim, M. T. Mayer, M. -K. Son, A. Ummadisingu, J.S. Lee, A. Hagfeldt, J. Luo, M. Grätzel, *Nat. Catal.*, 2018, **1**, 412-420.
- 11. X. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, T. Jin, Q. Wu, M. Xiang, M. Zhang, *Int. J. Hydrogen Energy*, 2014, **39**, 7686-7696.
- 12. X. Wen, W. Luo, Z. Guan, W. Huang, Z. Zou, Nano Energy, 2017, 41, 18-26.
- 13. C. G. Read, Y. Park, K. S. Choi, J. Phys. Chem. Lett., 2012, 3, 1872-1876.