Electronic Supplementary Information

Construction of plasmonic $1T-WS_2/2H-WS_2/CdS$ heterostructures for enhanced solar driven hydrogen evolution

Xiaoyu Chen, Zhi Han, Bin Zhang*, Bojing Sun, Yu Wang, Yunchen Du, Xijiang Han*, and Ping Xu*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

Email: pxu@hit.edu.cn (P.X.); zhangbin_hit@aliyun.com; hanxijiang@hit.edu.cn (X.H.)

Contents

Fig. S1	PerfectLight Labsolar 6A and PerfectLight PLS-SXE300/300UV.
Fig. S2	Optical images of pure CdS nanorods, 1T-WS ₂ /2H-WS ₂ /CdS heterostructures (WWC- 1-6), and pure WS ₂ nanosheets.
rig. 35	rd curves of pure cus hanorous under N ₂ atmosphere.
Fig. S4	XRD patterns of different 1T-WS ₂ /2H-WS ₂ /CdS heterostructures, CdS-W, CdS-CN, and nure CdS paperods
Fig. S5	Raman spectra of different 1T-WS ₂ /2H-WS ₂ /CdS heterostructures, CdS-W, CdS-CN, and pure CdS nanorods.
Fig. S6	Nitrogen sorption isotherms, BET surface areas, and pore volumes of pure WS_2 nanosheets.
Fig. S7	TEM and HRTEM images of pure CdS nanorods.
Fig. S8	TEM and the corresponding EDX mapping images of CdS-W heterostructures.
Fig. S9	HRTEM images of pure WS ₂ nanosheets.
Fig. S10	Comparison diagram of Cd 3d, S 2p, and W 4f of WWC-3-6 heterostructures.
Fig. S11	Comparison diagram of Cd 3d, S 2p, and W 4f of CdS-W heterostructures.
Fig. S12	(a) N 1s and (b) C 1s XPS spectra of WWC-1-6 heterostructures.
Fig. S13	EPR spectra of 1T-WS2/2H-WS2/CdS heterostructures (WWC-1-6) and CdS-W.
Fig. S14	Optical bandgaps of WWC-1-6 heterostructures and pure CdS nanorods.
Fig. S15	UV-visible absorption spectrum and optical bandgap of pure WS_2 nanosheets.
Fig. S16	H_2 evolution rates of different catalysts and $1T-WS_2/2H-WS_2/CdS$ heterostructures.
Fig. S17	The highest temperature of photocatalytic system with (a) pure CdS and (b) WWC- 1-6 as photocatalysts without cooling water.
Fig. S18	XY, XZ, YZ direction and 3D modeling of FDTD simulation diagram of WS_2 nanosheets.
Fig. S19	XY, XZ, YZ direction and 3D modeling of FDTD simulation diagram of CdS nanorods.
Fig. S20	XY, XZ, YZ direction and 3D modeling of FDTD simulation diagram of $1T-WS_2/2H-WS_2/CdS$ heterostructures.
Fig. S21	Theoretically calculated bandgap of (a) CdS, (b) $2H-WS_2$, and (c) $1T-WS_2$.
Table. S1	Specific dosage and the corresponding sample designations.
Table. S2	Quantitative analyses of the fitted XPS peaks of $1T$ -WS $_2$ and $2H$ -WS $_2$.
Table. S3	Photocatalytic hydrogen production performance of photocatalysts reported in literatures.
Table. S4	Carrier densities of pure CdS and $1T-WS_2/2H-WS_2/CdS$ heterostructures (WWC-1-6 and WWC-3-6).

Table. Time-resolved PL decay curve parameters obtained by double-exponential functionsimulation.

Fig. S1. (a) PerfectLight Labsolar 6A and (b) PerfectLight PLS-SXE300/300UV.

Fig. S2. Optical images of (a) pure CdS nanorods, (b) $1T-WS_2/2H-WS_2/CdS$ heterostructures (WWC-1-6), and (c) pure WS₂ nanosheets.

Fig. S3. TG curves of pure CdS nanorods under N₂ atmosphere.

Fig. S4. XRD patterns of different $1T-WS_2/2H-WS_2/CdS$ heterostructures (WWC-3-6, WWC-1-6, WWC-3-2), CdS-W (CdS-W represents only calcination the mixture of CdS and $H_{28}N_6O_{41}W_{12}$ · H_2O after grinding), CdS-CN (CdS-CN represents only calcination the mixture of CdS and $C_2H_4N_4$ after grinding), and pure CdS nanorods.

Fig. S5. Raman spectra of different $1T-WS_2/2H-WS_2/CdS$ heterostructures (WWC-3-6, WWC-1-6, WWC-1-2), CdS-W (CdS-W represents only calcination the mixture of CdS and $H_{28}N_6O_{41}W_{12}$ · H_2O after grinding), CdS-CN (CdS-CN represents only calcination the mixture of CdS and $C_2H_4N_4$ after grinding), and pure CdS nanorods.

Fig. S6. Nitrogen sorption isotherms, BET surface areas, and pore volumes of pure WS₂ nanosheets.

Fig. S7. TEM and HRTEM images of pure CdS nanorods.

Fig. S8. TEM and the corresponding EDX mapping images of CdS-W heterostructures (CdS-W represents only calcination the mixture of CdS and $H_{28}N_6O_{41}W_{12}$ · H_2O after grinding).

Fig. S9. HRTEM images of pure WS₂ nanosheets.

Fig. S10. Comparison diagram of (a) Cd 3d, (b) S 2p, and (c) W 4f of $1T-WS_2/2H-WS_2/CdS$ heterostructures (WWC-3-6).

Fig. S11. Comparison diagram of (a) Cd 3d, (b) S 2p, and (c) W 4f of CdS-W heterostructures (CdS-W represents only calcination the mixture of CdS and $H_{28}N_6O_{41}W_{12}$ · H_2O after grinding).

Fig. S12. (a) N 1s and (b) C 1s XPS spectra of WWC-1-6 heterostructures.

Fig. S13. EPR spectra of $1T-WS_2/2H-WS_2/CdS$ heterostructures (WWC-1-6) and CdS-W (CdS-W represents only calcination the mixture of CdS and $H_{28}N_6O_{41}W_{12}$ · H_2O after grinding).

Fig. S14. Optical bandgaps of $1T-WS_2/2H-WS_2/CdS$ heterostructures (WWC-1-6) and pure CdS nanorods.

Fig. S15. (a) Ultraviolet-visible absorption spectrum and (b) optical bandgap of pure WS_2 nanosheets.

Fig. S16. H₂ evolution rates of (a) different catalysts and (b) 1T-WS₂/2H-WS₂/CdS heterostructures (WWC-3-1, WWC-3-2, WWC-3-4, WWCp-3-6, WWC-3-8).

Fig. S17. The highest temperature of photocatalytic system with (a) pure CdS and (b) WWC-1-6 as photocatalysts without cooling water.

Fig. S18. (a) XY direction, (b) XZ direction, (c) YZ direction, and (d) 3D modeling of FDTD simulation diagram of WS₂ nanosheets.

Fig. S19. (a) XZ direction, (b) XY direction, (c) YZ direction, and (d, e) 3D modeling of FDTD simulation diagram of CdS nanorods.

Fig. S20. (a) XZ direction, (b) XY direction, (c) YZ direction, and (d, e) 3D modeling of FDTD simulation diagram of $1T-WS_2/2H-WS_2/CdS$ heterostructures.

Fig. S21. Theoretically calculated bandgap of (a) CdS, (b) 2H-WS₂, and (c) 1T-WS₂.

The mass ratio	H ₂₈ N ₆ O ₄₁ W ₁₂ ·H ₂ O	$C_2H_4N_4$	sample designations	
	0.01 g	0.01 g	WWC-1-1	
	0.02 g	0.02 g	WWC-1-2	
1:1	0.04 g	0.04 g	WWC-1-4	
	0.06 g	0.06 g	WWC-1-6	
	0.08 g	0.08 g	WWC-1-8	
	0.01 g	0.03 g	WWC-3-1	
	0.02 g	0.06 g	WWC-3-2	
1:3	0.04 g	0.12 g	WWC-3-4	
	0.06 g	0.18 g	WWC-3-6	
	0.08 g	0.24 g	WWC-3-8	

Table S1. Specific dosage and the corresponding sample designations.

Table S2. Quantitative analyses of the fitted XPS peaks of 1T-WS₂ and 2H-WS₂.

	2H phase	Peaks BE (eV)	35.02	32.66
		Area	10787.43	13683.78
VV VVC-1-0	1T phase	Peaks BE (eV)	34.18	31.95
		Area	6930.8	8791.84
	2H phase	Peaks BE (eV)	35.12	32.98
		Area	11220.54	14265.61
VV VVC-5-0	1T phase	Peaks BE (eV)	34.09	31.87
		Area	2844.80	3573.97

For WWC-1-6:

$$[1T]\% = \frac{[1T]}{[1T] + [2H]} \times 100\% = \frac{15722.64}{15722.64 + 24471.21} \times 100\% = 39.12\%$$

For WWC-3-6: $[1T]\% = \frac{[1T]}{[1T] + [2H]} \times 100\% = \frac{6418.77}{6418.77 + 25486.15} \times 100\% = 20.11\%$

Photocatalysts	H ₂ (mmol/g/h)	Illumination	Sacrificial agent	Ref.
CdS/g-C ₃ N ₄	0.392	3 W LED	20% CH₃OH	1
		(full spectrum)		
CdS/TiO ₂	1.5	300 W Xe lamp	0.5 M Na ₂ S and	2
		(>420 nm)	0.5 M Na ₂ SO ₃	
CdS/Ti ₃ C ₂	2.407	300 W Xe lamp	10 wt% lactic acid	3
		(>420 nm)	solution	
CdS/g-C ₃ N ₄	4.15	300 W Xe lamp	$0.35 \text{ M} \text{ Na}_2\text{S} \text{ and}$	4
		(>400 nm)	0.25 M Na ₂ SO ₃	
CdS/Ti ³⁺ /N-TiO ₂	1.118	300 W Xe lamp	$0.35 \text{ M} \text{ Na}_2\text{S} \text{ and}$	5
		(>420 nm)	0.25 M Na ₂ SO ₃	
CdS/Cu ₂ O/g-C ₃ N ₄	1.84	300 W Xe lamp	20% CH ₃ OH	6
		(AM 1.5G)		
NiS/CdS	2.18	300 W Xe lamp	$0.35 \text{ M} \text{ Na}_2\text{S} \text{ and}$	7
		(>420 nm)	0.25 M Na ₂ SO ₃	
NiS/CdS	0.15	300 W Xe lamp	10 wt% lactic acid	8
		(>420 nm)	solution	
CdS/g-C ₃ N ₄ /CuS	1.15	300 W Xe lamp	$0.35 \text{ M} \text{ Na}_2\text{S} \text{ and}$	9
		(>420 nm)	0.25 M Na ₂ SO ₃	
CdS/Co-MoS _x	0.54	300 W Xe lamp	10 wt% lactic acid	10
		(>420 nm)	solution	
1T-WS ₂ /2H-	4.67	300 W Xe lamp	0.35 M Na ₂ S and	This
WS ₂ /CdS		(>420 nm)	0.25 M Na ₂ SO ₃	work

Table S3. Photocatalytic hydrogen production performance of photocatalystsreported in literatures.

Table S4. Carrier densities of pure CdS and 1T-WS2/2H-WS2/CdS heterostructures(WWC-1-6 and WWC-3-6).

Samples	Carrier density cm ⁻³
pure CdS	7.16×10 ¹⁸
WWC-1-6	1.78×10 ¹⁹
WWC-3-6	1.45×10 ¹⁹

Table S5. Time-resolved PL decay curve parameters obtained by double-exponential

function simulation.					
Samples	τ ₁ (ns)	τ_2 (ns)	A1 (%)	A ₂ (%)	τ _{av} (ns)
pure CdS	1.12	10.13	66.22	33.78	4.16
pure WS_2	1.52	17.61	64.52	35.48	7.23
WWC-1-6	1.38	12.13	63.93	36.07	5.25

REFERENCES

- Z. Li, L. Zhang, Y. Liu, C. Shao, Y. Gao, F. Fan, J. Wang, J. Li, J. Yan, R. Li and C. Li, Surface-Polarity-Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays, Angew. Chem. Int. Ed., 2020, **132**, 945-952.
- Z. Jiang, K. Qian, C. Zhu, H. Sun, W. Wan, J. Xie, H. Li, K. Wong and S. Yuan, Carbon nitride coupled with CdS-TiO₂ nanodots as 2D/0D ternary composite with enhanced photocatalytic H₂ evolution: a novel efficient three-level electron transfer process, Appl. Catal. B, 2017, **210**, 194-204.
- R. Xiao, C. Zhao, Z. Zou, Z. Chen, L. Tian, H. Xu, H. Tang, Q. Liu, Z. Lin and X. Yang, In situ fabrication of 1D CdS nanorod/2D Ti₃C₂ MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution, Appl. Catal. B, 2020, 268, 118382.
- J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang and J. Yu, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C₃N₄ nanowires, ACS Appl. Mater. Interfaces, 2013, 5, 10317-10324.
- Y. Qin, H. Li, J. Lu, F. Meng, C. Ma, Y. Yan and M. Meng, Nitrogen-doped hydrogenated TiO₂ modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution, Chem. Eng. J., 2020, **384**, 123275.
- F. Nekouei, S. Nekouei, M. Pouzesh and Y. Liu, Porous-CdS/Cu₂O/graphitic-C₃N₄ dual pn junctions as highly efficient photo/catalysts for degrading ciprofloxacin and generating hydrogen using solar energy, Chem. Eng. J., 2020, **385**, 123710.
- W. Zhang, Y. Wang, Z. Wang, Z. Zhong and R. Xu, Highly efficient and noble metal-free NiS/CdS photocatalysts for H₂ evolution from lactic acid sacrificial solution under visible light, ChemComm, 2010, 46, 7631-7633.
- C. Li, H. Wang, S. Naghadeh, Z. Zhang and P. Fang, Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures, Appl. Catal. B, 2018, 227, 229-239.
- F. Cheng, H. Yin and Xiang Q, Low-temperature solid-state preparation of ternary CdS/g-C₃N₄/CuS nanocomposites for enhanced visible-light photocatalytic H₂-production activity, Appl. Surf. Sci., 2017, **391**, 432-439.
- Y. Lei, J. Hou, F. Wang, X. Ma, Z. Jin, J. Xu and S. Min, Boosting the catalytic performance of MoS_x cocatalysts over CdS nanoparticles for photocatalytic H₂ evolution by Co doping via a facile photochemical route, Appl. Surf. Sci., 2017, **420**, 456-464.