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Table S1. Specific dosage and the corresponding sample designations.

The mass ratio H28N6O41W12·H2O C2H4N4 sample designations

0.01 g 0.01 g WWC-1-1

0.02 g 0.02 g WWC-1-2

0.04 g 0.04 g WWC-1-4

0.06 g 0.06 g WWC-1-6

1:1

0.08 g 0.08 g WWC-1-8

0.01 g 0.03 g WWC-3-1

0.02 g 0.06 g WWC-3-2

0.04 g 0.12 g WWC-3-4

0.06 g 0.18 g WWC-3-6

1:3

0.08 g 0.24 g WWC-3-8

Table S2. Quantitative analyses of the fitted XPS peaks of 1T-WS2 and 2H-WS2.

Peaks BE (eV) 35.02 32.66
2H phase

Area 10787.43 13683.78
Peaks BE (eV) 34.18 31.95

WWC-1-6
1T phase

Area 6930.8 8791.84
Peaks BE (eV) 35.12 32.98

2H phase
Area 11220.54 14265.61

Peaks BE (eV) 34.09 31.87
WWC-3-6

1T phase
Area 2844.80 3573.97

For WWC-1-6:

[1𝑇]% =
[1𝑇]

[1𝑇] + [2𝐻]
× 100% =

15722.64
15722.64 + 24471.21

× 100% = 39.12%

For WWC-3-6:

[1𝑇]% =
[1𝑇]

[1𝑇] + [2𝐻]
× 100% =

6418.77
6418.77 + 25486.15

× 100% = 20.11%



Table S3. Photocatalytic hydrogen production performance of photocatalysts 
reported in literatures. 

Photocatalysts H2 (mmol/g/h) Illumination Sacrificial agent Ref.
CdS/g-C3N4 0.392 3 W LED

(full spectrum)
20% CH3OH 1

CdS/TiO2 1.5 300 W Xe lamp
(>420 nm)

0.5 M Na2S and 
0.5 M Na2SO3

2

CdS/Ti3C2 2.407 300 W Xe lamp
(>420 nm)

10 wt% lactic acid 
solution

3

CdS/g-C3N4 4.15 300 W Xe lamp
(>400 nm)

0.35 M Na2S and 
0.25 M Na2SO3

4

CdS/Ti3+/N-TiO2 1.118 300 W Xe lamp
(>420 nm)

0.35 M Na2S and 
0.25 M Na2SO3

5

CdS/Cu2O/g-C3N4 1.84 300 W Xe lamp
(AM 1.5G)

20% CH3OH 6

NiS/CdS 2.18 300 W Xe lamp
(>420 nm)

0.35 M Na2S and 
0.25 M Na2SO3

7

NiS/CdS 0.15 300 W Xe lamp
(>420 nm)

10 wt% lactic acid 
solution

8

CdS/g-C3N4/CuS 1.15 300 W Xe lamp
(>420 nm)

0.35 M Na2S and 
0.25 M Na2SO3

9

CdS/Co-MoSx 0.54 300 W Xe lamp
(>420 nm)

10 wt% lactic acid 
solution

10

1T-WS2/2H-
WS2/CdS

4.67 300 W Xe lamp
(>420 nm)

0.35 M Na2S and 
0.25 M Na2SO3

This 
work

Table S4. Carrier densities of pure CdS and 1T-WS2/2H-WS2/CdS heterostructures 

(WWC-1-6 and WWC-3-6).

Samples Carrier density cm-3

pure CdS 7.16×1018

WWC-1-6 1.78×1019

WWC-3-6 1.45×1019

Table S5. Time-resolved PL decay curve parameters obtained by double-exponential 

function simulation.

Samples τ1 (ns) τ2 (ns) A1 (%) A2 (%) τav (ns)

pure CdS 1.12 10.13 66.22 33.78 4.16

pure WS2 1.52 17.61 64.52 35.48 7.23

WWC-1-6 1.38 12.13 63.93 36.07 5.25
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