Unraveling the amines oxidative coupling activity of hierarchical porous $Fe-N_4-O_1$ single-atom catalysts: Oxygen atoms-mediated dual reaction pathway

Hongwei He,^{‡acd} Kui Ma,^{‡b} Huibin Liu,^{acd} Jing Li,^{acd} Lirong Zheng,^e Fengbao Zhang,^{acd} Xiaobin Fan,^{acd} Wenchao Peng,^{acd} Junyi Ji^{*b} and Yang Li^{*acd}

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China

^b School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China

^c Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China

^d Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China

^e Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China

Supplementary experimental section

Sample characterization

The obtained hybrids were characterized by transmission electronic microscopy (TEM, JEM–2100 F) and scanning electron microscopy (SEM, Hitachi, S–4800), high–angle annular dark–field scanning transmission electron microscopy (HADDF–STEM), N₂ adsorption/desorption measurements (Bjbuilder, SSA–7000), X–ray photoelectron spectroscopy (XPS, Escalab 250 Xi), X–ray diffraction (XRD, AXS D8–Focus, Cu–Ka radiation). The reactions were monitored by ultraviolet–visible absorption spectroscopy (UV–DRS; Shimadzu UV–2600), gas chromatography (GC; Agilent 6890N GC–FID system) and electron paramagnetic resonance spectrometer (EPR, E580). X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements were performed at 1W1B beamline of Beijing Synchrotron Radiation Facility (BSRF). The X-ray absorption spectra was removed by extrapolating the pre-edge region onto the EXAFS region, and the $\chi(E)$ data were normalized with respect to the edge jump step. Then the normalized $\chi(E)$ was transformed from energy space to k-space with $\chi(k)$ multiplied by k³ to compensate for the contributions from light scatters. Finally, the $k^3\chi(k)$ data in k-space ranging from 3.0 to 10.0 Å⁻¹ were Fourier-transformed to R-space to get the radial structure function spectra (RSFs). The XANES spectra of Fe foil and Fe₂O₃ were employed as the references.

Methods for RSFs simulation

The $\chi(k)$ data of the processed EXAFS spectra were fitted in R space ranging from 1.0 to 2.0 Å with the Artemis program of the IFEFFIT package. From this simulation, structural parameters including coordination number (N), coordination distance (R), Debye-Waller factors (σ^2) and inner potential correction (ΔE_0) were obtained. Theoretical RSFs of the samples were calculated using FEFF and their crystal structure parameters searched in FindIt database were compiled as the input data.

DFT calculations

Vienna ab-initio simulation package (VASP) based on density functional theory (DFT) was used for the entire calculations.¹ Projector augmented wave (PAW) method and Perdew-Burke-Ernzerhof functional were adopted for describing the interactions of inner core and valence electrons and calculating the exchange and correlation energies ^{2, 3}. Cutoff energy was set to 400 eV, and Brillouin zone was conducted using a 1×1×1 Monkhorst-Pack grid. The structure was optimized until reaching convergence. The convergence precisions of energy and force were set to 1.0×10^{-5} and 0.02 eV/Å, respectively. Spin polarization and van der Waals force (DFT-D2) were considered for a higher accuracy.

Fig. S1 The XRD pattern of Fe–NC before HCl treatment (wFe–NC). The diffraction peaks of metallic Fe (JCPDS number 50-1275), Fe_2O_3 (JCPDS number 40-1139) and MgO (JCPDS number 45-0946) are clearly observed in the XRD pattern.

Fig. S2 The TEM (a), HADDF-STEM (b) and corresponding element maps showing the distribution of C (c), N (d) and

Fe (e) images of	wFe–NC.
------------------	---------

Fig. S3 EDS spectrum of Fe–NC. (The peak at 2.06 keV belongs to the platinum sprayed on the surface of the sample during the SEM test)

Fig. S4 The N 1s (a) and O 1s (b) high–resolution XPS spectrum of Fe–NC. The N 1s (c) and O 1s (d) high–resolution XPS spectrum of Fe–NC–R.

The N 1s high–resolution XPS spectrum of Fe–NC can be deconvoluted into pyridinic N (398.62 eV), Fe–N (399.6 eV), pyrrolic N (400.34 eV), graphitic N (401.2 eV) and oxidized N (402.7 eV), respectively (**Fig. S4a**). The O 1s high–resolution XPS spectrum of Fe–NC can be deconvoluted into O–Fe (530 eV), O=C (531 eV) and O–C (532.3 eV), respectively (**Fig. S4b**). Compared with the N 1s and O 1s high–resolution XPS spectra of Fe–NC, there is the peak of Fe–N in the N 1s high–resolution XPS spectrum of Fe–NC–R (**Fig. S4c**), but the peak of O–Fe is not observed in the O 1s high–resolution XPS spectrum of Fe–NC–R (**Fig. S4d**). These results further demonstrate that Fe–NC and Fe–NC–R possess FeN₄O₁ and FeN₄ configuration.

Fig. S5 XPS Fe 2p spectra of Fe–NC, Fe–NC–R and Fe–NC–RH, respectively.

Fig. S6 Wavelet transform (WT) of the k^3 -weighted EXAFS data of Fe_2O_3 (a) and Fe foil (b), respectively.

Fig. S7 Nitrogen adsorption-desorption isotherms of the catalysts with different pyrolysis temperature (a) and amounts of FeCl₃ (b) or MgO (c). as well as corresponding pore size distribution curves (d–i). All as–prepared catalysts are referred as Fe_x –NC– y_z (x represents the mass fraction of FeCl₃ in ionic liquid. y represents the pyrolysis temperature. z represents the amount of MgO.)

Fig. S8 The Brunauer–Emmett–Teller (BET) surface areas of catalysts with different pyrolysis temperature (a), contents of FeCl₃ in ionic liquid (b) and amounts of or MgO (c). (d) The Fe content in catalysts with different amounts of or MgO. All as–prepared catalysts are referred as Fe_x –NC– y_z (x represents the mass fraction of FeCl₃ in ionic liquid. y represents the pyrolysis temperature. z represents the amount of MgO.)

Fig. S9 The effect of the pyrolysis temperature (a), the content of FeCl₃ in ionic liquid (b) and the amount of MgO

(c) on the catalytic performances of the catalysts^{a)}.

^{a)}The reaction is carried out with benzylamine (2.5 mmol), catalyst (20 mg) and p-xylene (5 mL) at 120 °C for 4 h in

air

condition.

Fig. S10 (a) The XRD patterns of Fe–NC and Fe–NC–R. (b) The SEM image of Fe–NC–R.

Fig. S11 Raman spectra of Fe–NC, Fe–NC–R and Fe–NC–RH.

Fig. S12 The C 1s high-resolution XPS spectrum of Fe-NC-R (a) and Fe-NC-RH (b).

Fig. S13 Difference of charge density of Fe–NC(FeN₄O₁). (The isosurface level is 0.015 $e^{A^{-3}}$. The yellow and blue isosurface present electron donation and accumulation, respectively.)

Fig. S14 Simulated structures of benzylamine and O₂ adsorbed on Fe–NC(FeN₄) and Fe–NC(FeN₄O₁), respectively.

Fig. S15 Ultraviolet-visible absorption spectra the oxidation of benzylamine system.

entry	catalyst	Fe content (wt %)
1	Fe ₄₃ -NC-750	1.1
2	Fe ₄₃ -NC-750 _{0.3}	1.03
3	Fe ₄₃ -NC-750 _{0.5}	1.15
4	Fe ₄₃ -NC-750 ₁	1.35
5	wFe-NC	30.11
6	Fe–NC	1.41
7	Fe–NC–R	1.5
8	Fe ₄₃ -NC-750 ₂	1.25

Table S1. The Fe content in catal	vsts as determined by inductive	v coupled plasma mass spectrome	trv.
	ysts as actermined by madeliver		

entry	catalyst	C (at %)	N (at %)	O (at %)	Fe (at %)
1	Fe–NC	64.56	13.93	21.16	0.35
2	Fe-NC-R	79.87	14.53	5.32	0.27
3	Fe-NC-RH	79.65	15.17	4.80	0.38

Table S2. The atomic percentages C, N, O and Fe in catalysts as determined by XPS.

Sample	Scattering pair	CN	R(Å)	σ^2	ΔE _o (eV)	R factor
Fe foil	Fe–Fe(1)	8*	2.46	0.0059	5.52	0.007
	Fe–Fe(2)	6*	2.84	0.0058	5.52	0.007
Fe–NC	Fe–O	1.37	2.07	0.0002	1.05	0.015
	Fe-N	3.75	1.98	0.0002	1.05	0.015
Fe-NC-R	Fe-N	1.99	1.95	0.0009	0.074	0.019
	Fe-N	1.99	1.93	0.0009	0.074	0.019

Table S3. Structural parameters extracted from the Fe K-edge EXAFS fitting. ($S_0^2 = 0.817$)

 S_0^2 is the amplitude reduction factor, obtained by fitting the standard sample; CN is the coordination number; R is interatomic distance (the bond length between Fe central atoms and surrounding coordination atoms); σ^2 is Debye–Waller factor (thermal and static disorder in absorber-scatterer distances); ΔE_0 is edge–energy shift. R factor is used to assessment the goodness of the fitting.

* Represents the value was fixed during EXAFS fitting, based on the known structure of Fe metal.

Catalyst	C-C/C=C	C–N	C0	C=0
Fe-NC-R	49.63%	14.39%	16.06%	19.92%
Fe-NC-RH	46.64%	18.79%	15.50%	19.07%

Table S4. The atomic percentages of surface functional groups from deconvoluted C 1s XPS spectral fitting.

catalyst	TOF (h ⁻¹)	Ref.
V-N-V-600	53.9ª	4
Meso Cs/MnOx	1.11 ^b	5
GCN–(Cu)	14 ^c	6
$Cu_{meth}AI_{butox}$	<0.5 ^d	7
Fe–NC	58.91 °	This work

Table S5. Comparison of TOF with Fe–NC and other reported catalysts for the oxidative coupling reaction of benzylamine.

^aTOF was calculated as moles of benzylamine converted per mole of V sites and a reaction time of 2 h. ^bTOF was calculated as moles of benzylamine converted per mole of catalyst and a reaction time of 3 h. ^cTOF was calculated as moles of benzylamine converted per mole of 24 h. ^dTOF was calculated as moles of benzylamine converted per mole of catalyst and a reaction time of 24 h. ^dTOF was calculated as moles of benzylamine converted per mole of catalyst and a reaction time of 2 h. ^eTOF was calculated as moles of benzylamine converted per mole of Fe sites and a reaction time of 4 h.

References

- 1. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 2. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 4. Q. Xu, B. Feng, C. Ye, Y. Fu, D. Chen, F. Zhang, J. Zhang and W. Zhu, ACS Appl. Mater. Interfaces, 2021, 13, 15168-15177.
- 5. S. Biswas, B. Dutta, K. Mullick, C. H. Kuo, A. S. Poyraz and S. L. Suib, ACS Catal., 2015, 5, 4394-4403.
- 6. A. Bakandritsos, R. G. Kadam, P. Kumar, G. Zoppellaro, M. Medved, J. Tucek, T. Montini, O. Tomanec, P. Andryskova, B. Drahos, R. S. Varma, M. Otyepka, M. B. Gawande, P. Fornasiero and R. Zboril, *Adv. Mater.*, 2019, **31**, e1900323.
- 7. D. Dissanayake, L. A. Achola, P. Kerns, D. Rathnayake, J. He, J. Macharia and S. L. Suib, Appl. Catal., B, 2019, 249, 32-41.