Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Ir/Ni-NiO/CNT Composites as Effective Electrocatalysts for Hydrogen Oxidation

Xiafang Ji, ${ }^{\text {a }}$ Peng Chen, ${ }^{a}$ Yuanjun Liu, ${ }^{\mathrm{b}}$ Zhenyuan Ji, ${ }^{\text {a }}$ Hongbo Zhou, ${ }^{\text {a, }}$ * Cairao Chen, ${ }^{a}$ Xiaoping Shen, ${ }^{a}$ Xiaoqi Fu, ${ }^{a}$ and Guoxing Zhu ${ }^{\text {a, } *}$
${ }^{\text {a S School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China. }}$
${ }^{\mathrm{b}}$ School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 202018, China

Corresponding authors:
Email: zhouhb@ujs.edu.cn; zhuguoxing@ujs.edu.cn

Supplementary methods

HOR polarization curves at different rotating rates (2500, 1600, 900, and 400 rpm) were conducted to extract the kinetic current density $\left(\mathrm{j}^{\mathrm{k}}\right)$ of each catalyst from the Koutecky-Levich equation (Eq. 1), ${ }^{\text {s1-s3 }}$

$$
\begin{equation*}
\frac{1}{j}=\frac{1}{j^{k}}+\frac{1}{j^{d}}=\frac{1}{j^{k}}+\frac{1}{B c_{0} \omega^{1 / 2}} \tag{Eq. 1}
\end{equation*}
$$

where j is the measured current density, j^{d} is the diffusion limited current density, B is the Levich constant, c_{0} is the solubility of $\mathrm{H}_{2}\left(7.33 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right), \omega$ is the rotating speed, respectively. Among them, B could be calculated from Eq. 2,

$$
\mathrm{B}=0.62 n \mathrm{FD}^{2 / 3} v^{-1 / 6} \quad \text { Eq. } 2
$$

where n is the electron transfer number, F is the Faraday constant $\left(96485 \mathrm{C} \mathrm{mol}^{-1}\right), D$ is the diffusivity of $\mathrm{H}_{2}\left(3.7 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$, and v is the kinematic viscosity $\left(1.01 \times 10^{-2} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$.

Exchange current density $\left(\mathrm{j}^{0}\right)$ was deduced from the Butler-Volmer equation (Eq. 3),

$$
j^{0}=\frac{R T j}{F \eta}
$$

Eq. 3
j^{0} can be obtained by fitting the kinetic current into the linearized Butler-Volmer equation (Eq. 3), where R is the universal gas constant $\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right), T$ is the operating temperature (298.15 $\mathrm{K}), F$ is the Faraday constant $\left(96485 \mathrm{C} \mathrm{mol}^{-1}\right)$.

Electrochemical active surface areas (ECSAs) were estimated via Cu underpotential deposition (UPD) stripping for all samples after HOR tests. ${ }^{\text {s4 }}$ The catalysts were firstly cycled in Ar-saturated $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution to guarantee a repeatable voltammogram curve as the background, and then were kept at 0.30 V (vs RHE) for 100 s in an Ar-saturated $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution containing 2 mM CuSO 4 . UPD Cu oxidation polarization curve was performed from 0.30 to 1.10 V with a scan rate of $10 \mathrm{mV} \mathrm{s}^{-1}$. The ECSAs were calculated via Eq. 4,

$$
\begin{equation*}
E C S A=\frac{Q_{C u}}{Q_{S} m_{\text {metal }}} \tag{Eq. 4}
\end{equation*}
$$

where Q_{Cu} stands the measured integral charge, Q_{s} represents the surface charge density of $420 \mu \mathrm{C}$ $\mathrm{cm}_{\text {metal }}{ }^{-2}$ for monolayer adsorption of Cu-UPD stripping, $\mathrm{m}_{\text {metal }}$ is the mass of the metal on GC.

Supplementary figures

Fig. S1. FT-IR spectra of PVP-CNT and pristine CNT.

The PVP-functionalized CNTs were examined by FT-IR spectrum, which presents three main absorption peaks. The peak at $3347 \mathrm{~cm}^{-1}$ is related to the $\mathrm{O}-\mathrm{H}$ stretching vibrations of hydroxyl groups. The peaks at 1620 and $1035 \mathrm{~cm}^{-1}$ are relevant to the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ stretching vibrations of the carboxyl moieties. The existence of polar functional groups indicates the improvement of hydrophilicity and the successful functionalization of CNTs.

Fig. S2. XRD pattern of $\mathrm{NiO} / \mathrm{CNT}$ product.

Fig. S3. SEM images for a) $\mathrm{Ni}(\mathrm{OH})_{2} / \mathrm{CNT}$, b) $\mathrm{NiO} / \mathrm{CNT}$, c) tre- $\mathrm{NiO} / \mathrm{CNT}$, d) $\mathrm{Ir} / \mathrm{CNT}$ and e-f) Ir/Ni-NiO/CNT.

Fig. S4. TEM images of tre- $\mathrm{NiO} / \mathrm{CNT}$.

Fig. S5. The survey scan XPS spectra of tre-NiO/CNT, Ir/CNT, and Ir/Ni-NiO/CNT.

Fig. S6. Raman spectra of a) $\mathrm{Ir} / \mathrm{CNT}$. b) tre- $\mathrm{NiO} / \mathrm{CNT}$. c) $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}$. The higher G and 2D band intensity of catalysts suggests a higher graphitization degree.

Fig. S7. Enlarged CV curves of $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}, \mathrm{Ir} / \mathrm{CNT}$ and Pt / C in Ar-saturated 0.1 M KOH
solution.

Fig. S8. HOR polarization curves in H_{2}-saturated 0.1 M KOH at various rotating rates and the corresponding Koutecky-Levich plots at 25 mV (vs RHE). a-b) Ir/CNT. c-d) Pt/C.

Fig. S9. Cu-UPD stripping voltammograms of Ir/Ni-NiO/CNT a), Ir/CNT b) and Pt/C c). The scan rates are $10 \mathrm{mV} \mathrm{s}^{-1}$. d) ECSAs of these three catalysts.

Fig. S10. a) HOR polarization curves of $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}$ at different loadings of Ir species and the corresponding HOR polarization curves in H_{2}-saturated 0.1 M KOH at various rotating rates. b) $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}-1, \mathrm{c}) \mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}-2$ and d) $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}-4$.

Fig. S11. a) CV curves in H_{2}-saturated 0.1 M KOH solution at a scan rate of $50 \mathrm{mV} \mathrm{s}^{-1}$. b) HOR polarization curves in H_{2}-saturated 0.1 M KOH solution with a scan rate of $10 \mathrm{mV} \mathrm{s}^{-1}$ at a rotating rate of 2500 rpm of $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}$ before and after 1000 CV cycles.

Fig. S12. Characterization results of the used catalyst for HOR. a) XRD pattern, b) SEM image, cd) TEM images. The noted area shows the particle-like $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO}$ unit.

Fig. S13. a, c) HER polarization curves of $\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}$ and other electrocatalysts. b, d) the corresponding HER Tafel slopes.

Supplementary tables

Table S1. ICP-AES data of different materials.

Catalysts	Ir(wt\%)	Ni(wt\%)
tre-NiO/CNT	$/$	43.6%
Ir/CNT	20.7%	$/$
Ir/Ni-NiO/CNT-1	2.0%	21.6%
Ir/Ni-NiO/CNT-2	3.6%	16.1%
Ir/Ni-NiO/CNT-3	9.17%	11.6%
Ir/Ni-NiO/CNT-4	11.2%	2.07%

Table S2. Summary of ECSA, $\mathrm{j}^{\mathrm{k}}, \mathrm{j}^{0}, \mathrm{j}^{\mathrm{k}, \mathrm{m}}, \mathrm{j}^{0, \mathrm{~m}}$ and $\mathrm{j}^{0, \mathrm{~s}}$ of various catalysts.

Catalysts	$\begin{gathered} \text { ECSA } \\ \left(\mathrm{cm}^{2} \mu \mathrm{~g}_{\mathrm{Ir}}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathbf{j}^{\mathbf{k}} @ 50 \mathrm{mV} \\ \left(\mathrm{~mA} \mathrm{~cm}_{\text {disk } \left.^{-2}\right)}\right. \end{gathered}$	$\begin{gathered} \mathbf{j}^{\mathbf{k}, \mathbf{m}_{@ 50 m V}} \\ \left(\mathrm{~mA} \mu \mathrm{~g}_{\left.\mathrm{Ir} \text { or } \mathrm{Pt}^{-1}\right)}\right. \end{gathered}$	$\begin{gathered} \mathbf{j}^{0} \\ \left(\mathrm{~mA} \mathrm{~cm}_{\mathrm{disk}^{-2}}\right) \end{gathered}$	$\begin{gathered} \mathbf{j}^{\mathbf{0 , m}} \\ \left({\mathrm{A} \mathrm{~g} \mathrm{~g} \mathrm{or} \mathrm{Pt}^{-1}}^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{j}^{\mathbf{0 , s}} \\ \left(\mu \mathrm{A} \mathrm{~cm}_{\mathrm{Ir} \text { or } \mathrm{Pt}^{-2}}\right) \end{gathered}$
Ir/Ni-NiO/CNT	0.48	4.63	1.59	2.04	69.78	145
Ir/ CNT	0.54	2.99	0.45	1.58	24.01	44
Pt / C	0.52	3.23	0.51	1.59	25.00	48

Table S3. Benchmark HOR activities and the relevant parameters of catalysts in alkaline electrolytes.

Catalysts	$\begin{gathered} \text { Loading } \\ \left(\mu \mathrm{g}_{\mathrm{PGM}} \mathrm{~cm}_{\text {disk }}{ }^{-2}\right) \end{gathered}$	$\underset{\left(\mathrm{cm}^{2} \mu \mathrm{~g}_{\mathrm{PGM}^{-1}}\right)}{\text { ECSA }}$	$\begin{gathered} \mathbf{j}^{0} \\ \left(\mathrm{~mA} \mathrm{~cm}_{\mathrm{disk}}{ }^{-2}\right) \end{gathered}$	$\begin{gathered} \mathbf{j}^{\mathbf{k}, \mathbf{m}} \\ \left(\mathrm{mA} \mu \mathrm{~g}_{\mathrm{Ir}}^{-1}\right) \text { at } \\ 50 \mathrm{mV} \end{gathered}$	Refs.
$\mathrm{Ir} / \mathrm{Ni}-\mathrm{NiO} / \mathrm{CNT}$	29.46	0.48	2.04	1.59	This work
Ir/CNT	65.89	0.54	1.58	0.45	This work
Ir/C	2.44	0.49	0.67	0.67	S5
IrRu Nanowires/C	33.6	0.528	0.126	1.41	S6
$\mathrm{Ir}_{9} \mathrm{Ru}_{1} / \mathrm{C}$	3.5	1	0.9	0.37	S7
$\mathrm{Ir}_{3} \mathrm{PdRu}_{6} / \mathrm{C}$	3.5	1	0.6	0.34	S7
IrNi@Ir/C	10	0.48	1.22	1.12	S8
IrNi/C	10	0.41	0.90	0.77	S8
Ir/C	10	0.138	0.53	1	S2
Pt/C	63.69	0.52	1.59	0.51	This work

Supplementary references

S1. W. C. Sheng, H. A. Gasteiger and S. H. Yang, J. Electrochem. Soc., 2010, 157, B1529-B1536.

S2. J. Zheng, Z. B. Zhuang, B. J. Xu and Y. S. Yan, ACS Catal., 2015, 5, 4449-4455.

S3. J. Durst, A. Siebel, C. Simon, F. Haschéet, J. Herranzal and H. A. Gasteiger, Energy Environ Sci., 2014, 7, 2255-2260.

S4. L. H. Fu, F. L. Yang, Y. C. Hu, Y. B. Li, S. G. Chen and W. Luo, Sci. Bull., 2020, 65, 17351742.

S5. Y. Yang, X. D. Sun, G. Q. Han, X. Liu, X. Y. Zhang, Y. F. Sun, M. Zhang, Z. Cao and Y. Sun, Angew. Chem. Int. Ed., 2019, 58, 10644-10649.

S6. B. W. Qin, H. M. Yu, X. Q. Gao, D. W. Yao, X. Y. Sun, W. Song, B. L. Yi and Z. G. Shao, J. Mater. Chem. A., 2018, 6, 20374-20382.

S7. H. S.Wang and H. D. Abruna, J. Am. Chem. Soc., 2017, 139, 6807-6810.

S8. D. Liu, S. Q. Lu, Y. R. Xue, Z. Guan, J. J. Fang, W. Zhu and Z. B Zhuang, Nano Energy, 2019, 59, 26-32.

