Electronic Supplementary Information

Controllable Inverse C₂H₂/CO₂ Separation in Ultra-Stable Zn-Organic Frameworks for Efficient Removal of Trace CO₂ from Acetylene

Jia Yu, Jing Zhang, Peng Zhang*, Ying Wang, Shu-Ni Li, Quan-Guo Zhai*

Key Laboratory of Macromolecular Science of Shaanxi Province, School of

Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi,

710062, China.

*Corresponding authors

E-mail: peng.zhang@snnu.edu.cn, zhaiqg@snnu.edu.cn.

MOF	SNNU-334	SNNU-335	SNNU-336
Empirical formula	$C_{58}H_{34}N_8O_{12}Zn_3$	$C_{60}H_{42}N_{12}O_{12}Zn_3$	C ₆₀ H ₃₆ N ₆ O ₁₂ Zn ₃
Formula weight	1231.04	1319.24	1229.15
Crystal system	Cubic	Cubic	Cubic
Space group	Pa-3	Pa-3	Pa-3
<i>a</i> (Å)	23.620(2)	23.978(2)	23.941(2)
b(Å)	23.620(2)	23.978(2)	23.941(2)
<i>c</i> (Å)	23.620(9)	23.978(2)	23.941(2)
a(deg)	90	90	90
$\beta(\text{deg})$	90	90	90
γ(deg)	90	90	90
Volume (Å ³)	13177.7(19)	13786(2)	13722.5(2)
Ζ	8	24	24
$d_{\text{calcd.}}$ (g·m ⁻³)	1.241	1.2711	1.1898
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
<i>F</i> (000)	4992	4992	4992
R _{int}	0.1165	0.0465	0.0669
Reflections collected/unique	65062/3891	440377/4685	438629/4679
Data/restraints/parameters	3891/9/261	4685/0/263	4679/0/244
GOF on F^2	1.036	1.445	1.142
$R_1^{a}, w R_2^{b}[I > 2\sigma(I)]$	0.056, 0.1460	0.0857, 0.2941	0.0436, 0.1454
R_1^{a} , wR_2^{b} (all data)	0.1261, 01334	0.0866, 0.2823	0.046, 0.143

 Table S1. Crystal data and structure refinements for SNNU-334-336.

 ${}^{a}R_{I} = \sum (|F_{o}| - |F_{c}|) / \sum |F_{o}|, \ wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2}) 2 / \sum w(F_{o}^{2})^{2}]^{0.5}$

SNNU	SNNU-334 SNNU-335		-335	SNNU-336	
Zn1-N1	2.014(4)	Zn1-N1	2.037(3)	Zn1-N1	2.035(2)
Zn1-N3	2.012(4)	Zn1-N2	2.040(3)	Zn1-N2	2.037(2)
Zn1-O1	1.914(3)	Zn1-O1	1.947(3)	Zn1-O1	1.9399(19)
Zn1-O3	1.900(4)	Zn1-O3	1.956(3)	Zn1-O3	1.9533(19)
O1-Zn1-O3	106.06(18)	O1-Zn1-O3	103.61(14)	O1-Zn1-O3	105.13(9)
N1-Zn1-N3	107.28(19)	N1-Zn1-N2	109.01(14)	N1-Zn1-N2	109.31(9)
O1-Zn1-N1	114.54(17)	O1-Zn1-N1	96.41(14)	O1-Zn1-N1	97.54(9)
O1-Zn1-N3	113.88(18)	O1-Zn1-N2	117.68(14)	O1-Zn1-N2	116.61(9)
O3-Zn1-N1	116.8(2)	O3-Zn1-N1	112.81(14)	O3-Zn1-N1	112.89(9)
O3-Zn1-N3	97.2(2)	O3-Zn1-N2	115.77(14)	O3-Zn1-N2	114.25(9)
C15-O1-Zn1	108.3(4)	C15-O1-Zn1	123.9(3)	C15-O3-Zn1	107.57(18)
C18-O3-Zn1	124.3(5)	C18-O3-Zn1	106.8(3)	C18-O1-Zn1	124.42(18)
C1-N1-Zn1	122.9(4)	C1-N1-Zn1	123.3(3)	C1-N2-Zn1	119.96(18)
C3-N8-Zn1	118.8(5)	C5-N1-Zn1	119.7(2)	C5-N2-Zn1	121.62(19)
C5-N1-Zn1	119.8(4)	C8-N2-Zn1	122.3(3)	C8-N1-Zn1	123.70(18)
C8'-N3-Zn1	118.7(14)	C12-N2-Zn1	119.7(3)	C12-N1-Zn1	118.60(18)
C12-N3-Zn1	125.2(5)				
C12'-N3-Zn1	127.9(14)				

Table S2. Selected bond lengths (Å) and bond angles (°) of SNNU-334-336.

Figure S1. (a) The structure generated by Zn^{2+} and BTC ligands in SNNU-334-336. (b) The 3D framework formed by the further coordination with tri-pyridine ligands. (c) The linkage between four types of metal-organic cages. (d-f) The 2-fold interpenetrated frameworks of SNNU-334-336 viewed along the a-axis direction. (g and h) The topological representations for the single and 2-fold interpenetrated metal-organic frameworks.

Figure S2. PXRD patterns of SNNU-334-336.

Figure S3. The adsorption curves of CO_2 and C_2H_2 for SNNU-334 at 263 K-308 K.

Figure S4. The adsorption curves of CO_2 and C_2H_2 for SNNU-335 at 263 K-308 K.

Figure S5. The adsorption curves of CO_2 and C_2H_2 for SNNU-336 at 263 K-308 K.

Figure S6. The calculated Q_{st} values for SNNU-334-336 of CO_{2} (a) and $C_{2}H_{2}$ (b).

Figure S7. IAST selectivity data for SNNU-334: (a) $C_2H_2/CO_2 = 50/50$ before reverse point at 263 K; (b) $C_2H_2/CO_2 = 50/50$ before reverse point 273 K; (c) $CO_2/C_2H_2 = 1/99$ at 273 K after reverse point; (d) $C_2H_2/CO_2 = 50/50$ at 283 K before reverse point; (e) $CO_2/C_2H_2 = 50/50$ after reverse point; (f) $CO_2/C_2H_2 = 1/99$ at 283 K after reverse point.

Figure S8. IAST selectivity data for SNNU-334: (a) $C_2H_2/CO_2 = 50/50$ at 298 K; (b) $C_2H_2/CO_2 = 1/99$ at 298 K; (c) $C_2H_2/CO_2 = 1/99$ at 308 K.

Figure S9. IAST selectivity data for SNNU-335: (a) $C_2H_2/CO_2 = 50/50$ before reverse point at 263 K; (b) $C_2H_2/CO_2 = 50/50$ after reverse point at 263 K; (c) $CO_2/C_2H_2 = 1/99$ after reverse point at 273 K; (d) $C_2H_2/CO_2 = 50/50$ before reverse point at 273 K; (e) $CO_2/C_2H_2 = 1/99$ after reverse point at 273 K; (f) $C_2H_2/CO_2 = 50/50$ before reverse point at 283 K.

Figure S10. IAST selectivity data for SNNU-335: (a) $C_2H_2/CO_2 = 50/50$ at 298 K; (b) $C_2H_2/CO_2 = 50/50$ at 308 K; (c) $C_2H_2/CO_2 = 99/1$ at 308 K.

Figure S11. IAST selectivity data for SNNU-336: (a) $C_2H_2/CO_2=50/50$ before reverse point at 263 K; (b) $CO_2/C_2H_2 = 50/50$ after reverse point at 263 K; (c) $C_2H_2/CO_2 = 50/50$ before reverse point at 273 K; (d) $CO_2/C_2H_2 = 1/99$ after reverse point at 273 K; (e) $C_2H_2/CO_2 = 50/50$ before reverse point at 283 K; (f) $CO_2/C_2H_2 = 50/50$ after reverse point at 283 K.

Figure S12. IAST selectivity data for SNNU-336: $C_2H_2/CO_2 = 50/50$ at 298 K (a) and 308 K (b).

Breakthrough Experiments and Procedures

The breakthrough experiments are carried out in a dynamic equipment, which is built in cooperation with the instrument supplier (Xi'an Sirius Scientific Research Instrument Co., Ltd.). The activated MOF samples (SNNU-334: 730.5 mg; SNNU-335: 546.3 mg; SNNU-336: 780.0 mg) were loaded into a stainless-steel column with an inradium of about 4 mm, and both ends were sealed with absorbent cotton. The column was placed in a circulating catheter sleeve connected to a thermostatic bath (temperature range from 263 K to 298 K). The flow and pressure of the mixed gas are controlled by the pressure control valve and the mass flow controller, respectively. Outlet effluent was continuously monitored using a mass spectrometer (Hiden, HPR-20) or gas chromatography (Fuli Instruments, 9790II). Before the start of each breakthrough experiment, the sample column was purged with He flow (30 mL min⁻¹) for 3-5 h to further activate the sample.

Figure S13. Experimental breakthrough curves of SNNU-334 at 263 K: (a) $CO_2/C_2H_2 = 50/50$; (b) $CO_2/C_2H_2 = 5/95$; (c) $CO_2/C_2H_2 = 3/97$; (d) $CO_2/C_2H_2 = 15/85$; (e) $CO_2/C_2H_2 = 1/99$.

Figure S14. Experimental breakthrough curves of SNNU-334: (a) $CO_2/C_2H_2 = 50/50$; (b) $CO_2/C_2H_2/He = 5/10/85$; (c) $CO_2/C_2H_2/He = 1/99/100$; (d) $CO_2/C_2H_2 = 1/99$ at 273 K; (e) $CO_2/C_2H_2 = 50/50$; (f) $CO_2/C_2H_2 = 1/99$ at 283 K.

Figure S15. Experimental breakthrough curves of SNNU-334: (a) $CO_2/C_2H_2 = 50/50$ and (b) $CO_2/C_2H_2 = 1/99$ at 298 K.

Figure S16. Experimental breakthrough curves of SNNU-335: (a) $CO_2/C_2H_2 = 50/50$ at 273 K; (b) $CO_2/C_2H_2 = 50/50$ at 283 K; (c) $CO_2/C_2H_2 = 50/50$ at 298 K; (d) $CO_2/C_2H_2 = 1/99$ at 298 K.

Figure S17. Experimental breakthrough curves of SNNU-336: (a) $CO_2/C_2H_2 = 50/50$ at 273 K; (b) $CO_2/C_2H_2 = 1/99$ at 273 K; (c) $CO_2/C_2H_2 = 50/50$ at 283 K; (d) $CO_2/C_2H_2 = 1/99$ at 283 K; (e) $CO_2/C_2H_2 = 50/50$ at 298 K; (f) $CO_2/C_2H_2 = 1/99$ at 298 K.

Figure S18. GCMC simulation of interactions between the MOF framework and gas molecule: C_2H_2 in SNNU-334-336 (a, c, and e) and CO_2 in SNNU-334-336 (b, d, f).

MOFs	CO ₂ /C ₂ H ₂ IAST Selectivity (50/50)	CO ₂ Uptake Capacity (cm ³ g ⁻¹)	C ₂ H ₂ Uptake Capacity (cm ³ g ⁻¹)	Reference
Cu-F-pymo	>10 ^{5a}	26.6	2.3	S 1
SNNU-334	3595.4 ^b	85.1	66.8	This Work
PMOF-1	694 ^b	53.3	7.5	S2
MUF-16	510°	47.8	4.0	S 3
Cd-NP	86 ^a	58	9.7	S4
Ce-MIL-140-4F	40 ^b	151.7	53.5	S5
[Tm ₂ (OH-BDC) ₂ (µ ₃ - OH) ₂](H ₂ O) ₂	18.2ª	130.6	47.0	S6
Mn(bdc)(dpe)	9.0°	45.9	7.3	S 7
SIFSIX-3-Ni	7.5ª	62.7	73.9	S 8
SNNU-335	6.9 ^b	78.4	63.0	This Work
PCP-NH ₂ -ipa	6.4ª	72	43.4	S9
CD-MOF-2	6.1ª	59.8	45.5	S10
PCP-NH ₂ -bdc	4.4 ^a	68	42.7	S 9
K ₂ [Cr ₃ O(OOCH) ₆]	5.6 ^d	11.2	2.4	S11
CD-MOF-1	3.4ª	64.3	49.9	S10
$[Zn(atz)(BDC-Cl_4)_{0.5}]_n$	2.4 ^e	34.6	18	S12
SNNU-336	1.7 ^b	92.7	65.3	This Work
$[Tm_2(OH\text{-}BDC)_2(\mu_3\text{-}OH)_2]$	1.6ª	139.1	117.6	S 6

Table S3. Summary of CO₂ and C₂H₂ uptake capacity and the IAST CO_2/C_2H_2 selectivity for MOF adsorbents with inverse C_2H_2/CO_2 separation performance.

IAST selectivity for equimolar mixture: a-298 K, 101 KPa; b-273 K, 101 KPa; c-293 K, 101 KPa; d-273 K, 91 KPa; 293 K, 101 KPa; e-285 K, 101 KPa.

References

- S1. Y. Shi, Y. Xie, H. Cui, Y. Ye, H. Wu, W. Zhou, H. Arman, R. B. Lin and B. Chen, *Adv. Mater.*, 2021, **33**, e2105880.
- S2. L. Z. Cai, Z. Z. Yao, S. J. Lin, M. S. Wang and G. C. Guo, Angew. Chem. Int. Ed., 2021, 60, 18223-18230.
- S3. O. T. Qazvini, R. Babarao and S. G. Telfer, Nat. Commun., 2021, 12, 197.
- S4. Y. Xie, H. Cui, H. Wu, R. B. Lin, W. Zhou and B. Chen, Angew. Chem. Int. Ed., 2021, 60, 9604-9609.
- S5. Z. Zhang, S. B. Peh, R. Krishna, C. Kang, K. Chai, Y. Wang, D. Shi and D. Zhao, Angew. Chem. Int. Ed., 2021, 60, 17198-17204.
- S6. D. Ma, Z. Li, J. Zhu, Y. Zhou, L. Chen, X. Mai, M. Liufu, Y. Wu and Y. Li, J. Mater. Chem. A, 2020, 8, 11933-11937.
- S7. M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata and S. Kitagawa, J. Am. Chem. Soc., 2016, 138, 3022-3030.
- S8. K.-J. Chen, Hayley S. Scott, David G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, Katherine A. Forrest, B. Space, John J. Perry and Michael J. Zaworotko, *Chem.*, 2016, 1, 753-765.
- S9. Y. Gu, J.-J. Zheng, K.-i. Otake, M. Shivanna, S. Sakaki, H. Yoshino, M. Ohba, S. Kawaguchi, Y. Wang, F. Li and S. Kitagawa, *Angew. Chem. Int. Ed.*, 2021, **60**, 11688-11694.
- S10. L. Li, J. Wang, Z. Zhang, Q. Yang, Y. Yang, B. Su, Z. Bao and Q. Ren, ACS. Appl. Mater. Interfaces, 2019, 11, 2543-2550.
- S11. R. Eguchi, S. Uchida and N. Mizuno, Angew. Chem. Int. Ed., 2012, 51, 1635-1639.
- S12. X.-Y. Li, Y. Song, C.-X. Zhang, C.-X. Zhao and C. He, Sep. Purif. Technol., 2021, 279, 119608.