Electronic Supplementary Information

Large second harmonic generation in penta-CdO₂ sheet exfoliated

from its bulk phase

Changsheng Hou,^a Yiheng Shen,^a Qian Wang*^a, Y. Kawazoe,^{b,c,d} and P. Jena^e

^a CAPT, School of Materials Science and Engineering, BKL-MEMD, Peking University, Beijing, 100871, China.

^b New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8577, Japan;

^c Department of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand;

^d Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.

^e Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA.

* Author to whom any correspondence should be addressed: qianwang2@pku.edu.cn

Table S1 The forty-five d^{10} -TM oxides from the Materials Project (MP) Database. SG

Formula	MP-id	SG	Formula	MP-id	SG	Formula	MP-id	SG
PdO ₂	P4 ₂ /mnm	1018886	CuO ₂	614565	Fmmm	ZnO	2133	P6 ₃ mc
PdO	<i>P</i> 4 ₂ / <i>mmc</i>	1336	CuO ₂	600604	Fmmm	ZnO	1986	$F^{\overline{4}}3m$
PdO ₂	$Pn\overline{3}m$	10729	CuO ₂	705439	Pmmm	ZnO ₂	8484	Pa3
PdO	$Fm\overline{3}m$	10728	Ag ₂ O	353	$Pn\overline{3}m$	ZnO	2229	$Fm\overline{3}m$
PdO	$Pm\overline{3}m$	603251	Ag ₃ O ₄	1605	$P2_{1}/c$	ZnO_2	1094003	$P\bar{3}m1$
CuO	1692	<i>P</i> 4 ₂ / <i>mmc</i>	AgO	499	Cccm	CdO	1132	$Fm\overline{3}m$
Cu ₂ O	361	$Pn\overline{3}m$	AgO	1065190	C2/c	CdO ₂	2310	Pa3
CuO	704645	<i>C</i> 2/ <i>c</i>	AgO	1066856	C2/c	CdO ₂	1096866	$P\bar{3}m1$
CuO	1064456	Cccm	Ag_2O_3	546190	Fdd2	CdO ₂	1096876	Cm
Cu ₄ O ₃	1478	$I4_1/amd$	AgO	1079720	$P2_{1}/c$	HgO	1224	Pnma
Cu ₈ O	31217	Cmmm	AgO	1288	$I4_{1}/a$	HgO	556859	$P2_{1}/m$

represents the space group.

CuO	14549	$Fm\overline{3}m$	Ag ₂ O	7711	$P\bar{3}m1$	HgO	7826	<i>P</i> 3 ₁ 21
Cu ₈ O	704745	Amm2	Ag ₂ O ₃	11872	$Pn\overline{3}m$	HgO	1077107	P3 ₂ 21
CuO ₂	1181499	Стст	AgO	8222	$F^{\overline{4}}3m$	HgO ₂	557266	Pbca
CuO ₂	601195	Cmcm	Au_2O_3	27253	Fdd2	Hg ₂ O	2278	C2/m

Fig. S1 Imaginary part of (a) the SHG susceptibility, and (b) the dielectric function of penta-CdO₂ obtained with different vacuum space L_z .

Fig. S2 Phonon spectra of (a) penta- ZnO_2 and (b) penta- HgO_2 .

Fig. S3 Imaginary part $\text{Im}[\chi \text{sheet } 14(\omega)]$ of the SHG susceptibility of penta-CdO₂ obtained with different *k*-mesh.

Fig. S4 SHG susceptibility χ bulk 11(ω) of KBBF.

Fig. S5 (a) Top and side views of the optimized geometry, and (b) electronic band structure of bilayer penta-CdO₂.

Fig. S6 (a) Top and (b) side views of the optimized geometry of trilayer penta-CdO₂.

Fig. S7 SHG susceptibility of (a) χ sheet 14(ω) and (b) χ sheet 36(ω) of bilayer penta-CdO₂.

Fig. S8 SHG susceptibility (a) χ sheet 14(ω) and (b) χ sheet 36(ω) of penta-CdO₂.

Fig. S9 Normalized *k*-point-dependent distributions of (a) Im[ε sheet $xx(\omega/2)$] and (b) Im[ε sheet $zz(\omega/2)$] at the peak value at $\omega/2 = 1.88$ eV, and (c) band structure of penta-CdO₂ at the PBE level with scissors correction.

Fig. S10 Band-decomposed charge density distribution of the energy bands near the Fermi level of penta-CdO₂(isosurface values = 0.005 Å^{-3}).

Fig. S11 (a) Optical band gap (E_g) determined from the Tauc plot, and (b) thermal expansion of penta-CdO₂.

Fig. S12 (a) Top and side views of the optimized geometry of penta- ZnO_2 . (b) Total potential energy fluctuation with time during the AIMD simulation at 400 K.

Fig. S13 Electronic band structure of penta-ZnO₂.

Fig. S14 SHG susceptibilities (a) χ sheet 14(ω) and (b) χ sheet 36(ω) of penta-ZnO₂.

We also find that another 2D d^{10} -TM oxide, penta-ZnO₂, can also exhibit large SHG response, as we expected. The fully optimized geometry of penta-ZnO₂ is presented in Fig. S12(a). Its unit cell contains two Zn and four O atoms, which occupy two nonequivalent Wyckoff positions, namely, 2b (0.500, 0.500, 0.500) and 4e (0.882, 0.618, 0.458), respectively. The lattice parameters are a = b = 4.49 Å. The penta-ZnO₂ sheet is also dynamically and thermally stable, as illustrated in Fig. S1(a) and Fig. S12(b). The calculated linear elastic constants are $C_{11} = 42.50$ N m⁻¹, $C_{12} = 3.00$ N m⁻¹, and $C_{66} = 22.56 \text{ N m}^{-1}$, which meet the requirements of Born-Huang criteria ($C_{11} > 0$, $C_{11} > C_{12}$ and $C_{66} > 0$,⁵⁰ confirming that penta-ZnO₂ is mechanically stable. The band structures of penta-ZnO₂ at the HSE06 level and PBE level are given in Fig. S13, which show that penta-ZnO₂ is also semiconducting with an indirect band gap of 2.46 eV at the PBE level, and 4.52 eV at the HSE06 level, larger than the corresponding values of 1.45 and 3.28 eV, respectively, for penta-CdO₂. We further explore its potential for SHG performance because of the non-centrosymmetric and non-metallic features of penta-ZnO₂. We find that penta-ZnO₂ possesses strong in-plane and out-of-plane SHG response with large static SHG susceptibilities of χ sheet 14(0) = χ sheet 25(0) = χ sheet $36(0) = -5.60 \text{ pm}^2/\text{V}$. We further calculate the frequency-dependent SHG susceptibility of penta-ZnO₂, especially consider its imaginary part (Im[γ sheet $abc(\omega)$]). The real parts, imaginary parts, and modulus of different nonzero independent SHG tensor components are plotted in Fig. S14. One can see that the Im[χ sheet 14(ω)] and Im[χ sheet 36(ω)] of penta-ZnO₂ have the most significant peak values of 236.85 pm²/V and 639.56 pm²/V at 2.54 eV, respectively. The most significant peak value of Im[χ sheet $abc(\omega)$] in penta-CdO₂ is at a lower energy range due to its smaller band gap of 3.28 eV at the HSE06 level compared with that of penta-ZnO₂, leading to a larger SHG response in penta-CdO₂.