Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Investigation of the impact of zeolite shaping and salt deposition on the characteristics and performance of composite thermochemical heat storage systems.

-Supplementary data-

Quentin Touloumet^a, Georgeta Postole^{a*}, Laurence Massin^a, Chantal Lorentz^a, Aline Auroux^{a*}

^a Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France

Corresponding authors: <u>georgeta.postole@ircelyon.univ-lyon1.fr</u> <u>aline.auroux@ircelyon.univ-lyon1.fr</u>

Figure S1. Pore size distribution of 13X based materials between 2-8 nm.

Figure S2. Pore size distribution of LiX(b) and corresponding composites between 2-8 nm.

Figure S3. Water vapor sorption/desorption isotherms at 25 °C of 13X (a) and LiX (b) and corresponding composites.

Figure S4. Weight evolution during first 100 min of the second dehydration of 13X (a) and LiX (b) and corresponding composites

Figure S5. Heat and water storage capacities of 13X(b) during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S6. Heat and water storage capacities of 13X(b)@Ca during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S7. Heat and water storage capacities of 13X(b)@Mg during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S8. Heat and water storage capacities of 13X(b)@Li during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S9. Heat and water storage capacities of 13X(b)@CaMg during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S10. Heat and water storage capacities of 13X(b) crushed during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S11. Heat and water storage capacities of 13X(p) during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S12. Heat and water storage capacities of 13X(p)@Ca during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S13. Heat and water storage capacities of LiX(b) during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S14. Heat and water storage capacities of LiX(b)@Ca during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S15. Heat and water storage capacities of LiX(b)@Mg during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S16. Heat and water storage capacities of LiX(b)@Li during first hydration (H1), second dehydration (D2) and second hydration (H2).

Figure S17. Heat and water storage capacities of LiX(b)@CaMg during first hydration (H1), second dehydration (D2) and second hydration (H2).

Hydration Water sorption Host matrix Salt content RH during Dehydration Heat Ref. hydration storage (wt.%)^a temperature temperature capacity capacity $(kg^{H_2O} kg^{-1})^{b}$ (°C) (%) (°C) (kJ kg⁻¹)^c **Host matrices** 13X(b) 25 30 300 0.28 1007 This work 25 30 300 1080 This work 13X(p) 0.28 . LiX(b) 25 30 300 0.28 1058 This work 13X 20 55 150 _ 928 [1] NaY 20 55 150 978 [1] -SBA-15 150 20 30 0.04 [2] MCM-41 20 30 150 0.04 [2] AlPO-5 30 400 0.237 703 [3] r.t. AlPO-18 30 400 0.283 1192 [3] _ r.t. Composites 13X(b) 4.8 wt% CaCl₂ 30 300 0.29 0.21 25 This work 13X(b) 4.8 wt% MgSO₄ 30 300 This work 25 0.26 0.17 13X(b) 5.1 wt% of LiCl 25 30 300 0.28 0.19 This work 13X(b) 2.6 wt% CaCl₂ + 25 30 300 0.28 0.20 This work 2.5 wt% MgSO₄ 4.6 wt% CaCl₂ 300 30 0.29 972 13X(p) 25 This work This work LiX(b) 5.2 wt% CaCl₂ 25 30 300 0.28 900 LiX(b) 5.4 wt% MgSO₄ 30 300 0.28 890 25 This work 4.7 wt% of LiCl LiX(b) 25 30 300 0.26 892 This work This work LiX(b) 2.7 wt% CaCl₂ + 25 30 300 0.26 897 2.5 wt% MgSO₄ SBA-15 7 wt% Al₂(SO₄)₃ 20 30 150 0.17 612 [2] 0.09 MCM-41 7 wt% Al₂(SO₄)₃ 20 30 150 334 [2] 13X 15 wt% MgSO4 30 60 300 0.205 636 [4] 13X 10.8 wt% MgSO4 80 150 632 25 -[5] 13.8 wt% CaCl₂ 300 746 Silica gel 20 30 0.23 [6] 14.4 wt% CaCl₂ 30 300 0.17 576 Alumina 20 [6]

Mesoporous

ordered silica

4 wt% CaCl₂

40

16.6

120

0.10

292

Table S1. Comparison of storage performances between studied composites-based zeolites and other composites in literature.

[7]

Mesoporous ordered silica	4 wt% CaCl ₂	40	16.6	120	0.14	428	[7]
MIL- 100(Fe)	46 wt% CaCl ₂	30	86	80	0.47	1206	[8]
MIL- 101(Cr)	62 wt% CaCl ₂	30	86	80	0.58	1728	[8]
SBA-15	62 wt\% CaCl_2	25	30	150	-	1698	[9]

^a Determined by ICP-OES ($\pm 2\%$).^b Water sorption capacity determined with Eq. (2) on dehydrated sample at 300 °C (± 0.02). ^c Dehydration heat determined by 2nd dehydration heat flow integration ($\pm 20 \text{ kJ kg}^{-1}$).

Figure S18. Photography of the water satured environment with studied materials closed (a) and open (b).

Name	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹) ^a	Micropores volume (cm ³ g ⁻¹) ^c
13X(b)-ws	724	0.35	0.27
13X(b)@Ca-ws	558	0.28	0.20
LiX(b)-ws	742	0.41	0.28
LiX(b)@Ca-ws	559	0.35	0.21

Table S2. Textural characterization of materials after 800 h in closed environment (100 %RH)

^a Determined for $P/P_0 = 0.99$. ^c Determined using the t-plot N_2 .

Figure S19. Evolution of the adsorption potential of water molecules in function of the water uptake of 13X (a), LiX(b) (b) and corresponding composites.

Figure S20. Linear transform of the Dubinin-Astakhov model of 13X(b).

Figure S21. Linear transform of the Dubinin-Astakhov model of 13X(b)@Ca.

Figure S22. Linear transform of the Dubinin-Astakhov model of 13X(b)@Mg.

Figure S23. Linear transform of the Dubinin-Astakhov model of 13X(b)@Li.

Figure S24. Linear transform of the Dubinin-Astakhov model of 13X(b)@CaMg.

Figure S25. Linear transform of the Dubinin-Astakhov model of 13X(b) crushed.

Figure S26. Linear transform of the Dubinin-Astakhov model of 13X(p).

Figure S27. Linear transform of the Dubinin-Astakhov model of 13X(p)@Ca.

Figure S28. Linear transform of the Dubinin-Astakhov model of LiX(b).

Figure S29. Linear transform of the Dubinin-Astakhov model of LiX(b)@Ca.

Figure S30. Linear transform of the Dubinin-Astakhov model of LiX(b)@Mg.

Figure S31. Linear transform of the Dubinin-Astakhov model of LiX(b)@Li.

Figure S32. Linear transform of the Dubinin-Astakhov model of LiX(b)@CaMg.

Dubinin and Asktakhov model equations:

This model is described by Eq. (S1):

$$W' = W_0 exp\left(\frac{-\varepsilon}{E}\right)^n where E = \frac{\beta}{\sqrt{K}} \wedge \varepsilon = RT ln\left(\frac{P_s}{P}\right)$$
(S1)

This equation can be transformed to a linear one by taking logarithms:

$$ln(W') = ln(W_0) - \left(\frac{RT}{E}ln\left(\frac{P_s}{P}\right)\right)^n$$
$$ln\left(-ln\left(\frac{W'}{W_0}\right)\right) = nln\left(\frac{RT}{E}\right) + nln\left(ln\left(\frac{P_s}{P}\right)\right)$$

In these equations, K represents the pore distribution constant, β the affinity coefficient of the sorptive, Ps the saturation pressure, P the partial pressure of water vapor, W' the amount of water sorbed, and We the maximal sorbed amount. The order of distribution n reflects the heterogeneity of the solid: n increases with the degree of homogeneity of the solid structure

sample	θª	n ^b	R ²	
13X(b)	$\theta < 0.64$	3.75	0.9831	
	$\theta > 0.64$	0.57	0.9834	
13X(b)@Ca	$\theta < 0.63$	3.02	0.9669	
	$\theta > 0.63$	0.74	0.9723	
13X(b)@Mg	$\theta < 0.49$	2.93	0.9935	
	$\theta > 0.49$	0.33	0.9804	
13X(b)@Li	$\theta < 0.27$	2.06	0.9996	
	$\theta > 0.27$	0.16	0.9867	
13X(b)@CaMg	$\theta < 0.66$	3.71	0.9890	
	$\theta > 0.66$	0.54	0.9934	
13X(b) crushed	$\theta < 0.68$	3.28	0.9858	
	$\theta > 0.68$	0.70	0.9947	
13X(p)	$\theta < 0.64$	3.37	0.9895	
	$\theta > 0.64$	1.19	0.9983	
13X(p)@Ca	$\theta < 0.30$	2.00	0.9661	
	$\theta > 0.30$	0.08	0.9082	
LiX(b)	$\theta < 0.64$	3.40	0.9935	
	$\theta > 0.64$	0.74	0.9590	
LiX(b)@Ca	$\theta < 0.50$	3.18	0.9961	
	$\theta > 0.50$	0.40	0.9838	
LiX(b)@Mg	$\theta < 0.62$	3.61	0.9944	
	$\theta > 0.62$	0.51	0.9536	
LiX(b)@Li	$\theta < 0.18$	2.62	0.9992	
	$\theta > 0.18$	0.22	0.9704	
LiX(b)@CaMg	$\theta < 0.61$	3.61	0.9968	
	$\theta > 0.61$	0.44	0.9646	

	Table S3. Par	ameters of the	Dubinin-A	stakhov ad	sorption	model.
--	---------------	----------------	-----------	------------	----------	--------

^a Filling factor determined at the intersection of the two regression lines.

^b The parameter n corresponds to the slope of the regression lines.

References

- [1] G. Whiting, D. Grondin, S. Benici, A. Auroux, Heats of water sorption studies on zeolite- MgSO₄ composites as potential thermochemical heat storage materials, Sol. Energy Mater. Sol. Cells 12 112-119 (2013). https://doi.org/10.1016/j.solmat.2013.01.020.
- [2] A. Jabbari-Hichri, S. Bennici, A. Auroux, Effect of aluminium sulfate addition on the thermal storage performance of mesoporous SBA-15 and MCM-41 materials, Sol. Energy Mater. Sol. Cells 149 231-241 (2016). http://doi.org/10.1016/j.solmat.2016.01.033.
- [3] J. Jänchen, D. Ackermann, E. Weiler, H. Stach, W. Brösicke, Calorimetric investigation on zeolites, AlPO₄'s and CaCl₂ impregnated attapulgite for thermochemical storage of heat, Thermochim. Acta 434 37-41. https://doi.org/10.1016/j.tca.2005.01.009.
- [4] S.X. Xu, Lemington, R.Z. Wang, L.M. Wang, J. Zhu, A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating, Energy Conver. Manag. 171 98-109 (2018). https://doi.org/10.1016/j.enconman.2018.05.077.
- [5] Q. Wang, Y. Xie, B. Ding, G. Yu, F. Ye, C. Xu, structure and hydration state characterizations of MgSO₄zeolite 13x composite materials for long-term thermochemical heat storage, Sol. Energy Mater. Sol. Cells 200 110047 (2019). https://doi.org/10.1016/j.solmat.2019.110047.
- [6] A. Jabbari-Hichri, S. Bennici, A. Auroux, Enhancing the heat storage density of silica–alumina by addition of hygroscopic salts (CaCl₂, Ba(OH)₂, and LiNO₃), Sol. Energy Mater. Sol. Cells. 140 351–360 140 (2015). https://doi.org/10.1016/j.solmat.2015.04.032.
- [7] A. Ristic, N. Zabukovec Logar, New composite water sorbents CaCl₂-PHTS for low-temperature sorption heat storage: determination of structural properties, 9 27 (2019). https://doi.org/10.3390/nano9010027.

- [8] A. Permyakova, S. Wang, E. Courbon, F. Nouar, N. Heymans, P. D'ans, N. Barrier, P. Billemont, G. De Weireld, N. Steunou, M. Frère, C. Serre, Design of salt-metal organic framework composites for seasonal heat storage applications. J. Matter. Chem. A 5 12889 (2017). https://doi.org/10.1039/c7ta03069j.
- [9] L. Silvester, Q. Touloumet, A. Kamaruddin, F. Chassagneux, G. Postole, A. Auroux, L. Bois, Influence of silica functionalization on water sorption and thermochemical heat storage of mesoporous SBA-15/CaCl2 composites, ACS Appl. Energy Mater. 4 5944-5956 (2021). https://doi.org/10.1021/acsaem.1c00786.