Supporting information

Modulation of Double-Network Hydrogels via Seeding Calcium Carbonate Microparticles for the Engineering of Ultrasensitive Wearable Sensors

Xiaohui Zhang,^a Huimin Geng,^a Xunhui Zhang,^a Yaqing Liu,^a Jingcheng Hao,^{*a} and Jiwei Cui^{*a,b}

^aKey Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China;

^bState Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China

Email: jhao@sdu.edu.cn; jwcui@sdu.edu.cn

Fig. S1 SEM images of PAM hydrogels.

Fig. S2 SEM images of SA/PAM hydrogels.

Fig. S3 SEM images of CaCO₃ microparticles.

Fig. S4 Photographs of the SA/PAM hydrogel before and after the trigger with HCl.

Fig. S5 Photographs of the CaCO₃/SA/PAM and Ca²⁺/SA/PAM hydrogels after the trigger with HCl.

Fig. S6 Water absorption ratio of PAM hydrogels, SA/PAM hydrogels, and Ca²⁺/SA/PAM DN hydrogels in water.

Fig. S7 FTIR spectra of SA powder, SA/PAM, CaCO₃/SA/PAM and Ca²⁺/SA/PAM DN (at various concentrations of CaCO₃ microparticles, 1–5 mg mL⁻¹) hydrogels.

Fig. S8 (a) Tensile stress-strain curves and (b) corresponding toughness of SA/PAM hydrogels after trigger with HCl for different time.

Fig. S9 (a) Tensile stress-strain curves and (b) corresponding toughness of $Ca^{2+}/SA/PAM$ DN hydrogels at various concentrations of SA (the concentration of AM and MBAA were 320 and 0.2 mg mL⁻¹, respectively).

Fig. S10 (a) Tensile stress-strain curves and (b) corresponding toughness of $Ca^{2+}/SA/PAM$ DN hydrogels at various concentrations of AM (the concentration of SA and MBAA were 20 and 0.2 mg mL⁻¹, respectively).

Fig. S11 (a) Tensile stress-strain curves and (b) corresponding toughness of $Ca^{2+}/SA/PAM$ DN hydrogels at various concentrations of MBAA (the concentration of SA and AM were 20 and 320 mg mL⁻¹, respectively).

Fig. S12 (a) Comparison of Ca²⁺/SA/PAM DN and CaSO₄/SA/PAM hydrogels with the same quantity of Ca²⁺. (b) Comparison of Ca²⁺/SA/PAM DN and CaCl₂/SA/PAM hydrogels at different concentrations of CaCl₂.

Fig. S13 The corresponding dissipated energy of PAM, SA/PAM, and Ca²⁺/SA/PAM DN hydrogels under 500% strain by loading-unloading tests.

Fig. S14 (a) Stress-strain curves and (b) calculated recovery ratio and dissipated energy of Ca²⁺/SA/PAM DN hydrogels with successive loading-unloading tests under 500% strain for 10 cycles.

Fig. S15 (a) Stress-strain curves from compression tests and (b) toughness of $Ca^{2+}/SA/PAM$ DN hydrogels at various concentrations of CaCO₃ microparticles.

Fig. S16 (a) Loading–unloading tests and (b) calculated recovery ratio and dissipated energy of Ca²⁺/SA/PAM DN hydrogels under 90% strain for 10 cycles without resting intervals.

Materials	Tensile property		Conductivity	Course feator	Detection range	Response time	Defenences
	σ (MPa)	ε (%)	(S/m)	Gauge factor	ε (%)	(ms)	Kelerences
CNF/CS/PAM	0.29	691	0.68	3.13	50-200	520	1
CNF/CS/P(AM-co-AA)	11	480	2.2	/	/	/	2
ZnSO ₄ /SA/PAM	0.15	700	3.24	/	/	/	3
NaCl/SA/PAM	0.65	2000	0.06	2.66	0.3-1800	/	4
F127-CHO/ MWCNT/P(AM-co- AEMA)/LiCl	0.15	1205	3.96	2.32	930	/	5
LMs/GelMA	0.15	150	/	48	150	50	6
Starch/PAM	0.06	135	0.13	0.98	/	/	7
PAA-r-BVIT/PEO	0.039	321	0.036	1.1	50-200	80	8
AP/P(AA-co-AM)/KCl	0.2	1089	0.17	8.82	/	100	9
LMA/PAM/PNIPAM/LiCl	0.96	1866	/	7.57	0.25-1500	197	10
HPMC-g-AN/AM-ZnCl ₂	0.16	1730	1.54	0.94	/	/	11
PVA/P(SBMA-co-HEMA)	0.376	337	4.58	3.36	1-300	130	12
PAM/[EMIM]Cl	0.023	1160	3.87	6.78	50-800	/	13
CMC/PAM/LiCl	0.023	1363	/	3.15	100-500	360	14

Table S1. Summary of recent hydrogel-based flexible sensors.

CA/PAM/Li2SO4	0.225	2800	/	9.6	/	/	15
P(AM-APBA)/NaCl	0.21	1600	4.8	8	2.5-200	380	16
PAA/PANI NFs	0.036	991	/	18.28	5-268.9	/	17
PAA/ACC/Mxene	0.18	450	/	10.79	0.3-90	20	18
EDTANa ₂ Ca/SA/P(SBMA-co- HEMA)	0.294	975	0.39	3.26	/	/	19
MEA/AA/Graphene	0.175	1080	0.012	3.40	0.2-500	/	20
HLPs/P(AAm-co-LMA)/LiCl	1.37	2058	1.79	5.44	0.25-2000	151	21
PAM/CS-PA	0.150	1350	10.5	10.87	0.1-1000	291	22
Ca ²⁺ /SA/PAM DN	0.85	1850	0.85	8.91	0.03-1800	20	This work

Fig. S17 Viability of NIH-3T3 cells after incubation with PAM, SA/PAM, or $Ca^{2+}/SA/PAM$ hydrogel extracts for 24 h.

Fig. S18 Fluorescence microscopy images of live/dead NIH-3T3 cells after incubation with PAM, SA/PAM, or Ca²⁺/SA/PAM hydrogel extracts for 24 h.

Fig. S19 Electrical resistance from the flexion and extension of (a) elbow and (b) wrist.

Fig. S20 Photographs of MS and MS/GOx@TA/Fe²⁺ NPs suspension.

Incubation of MS NPs with glucose oxidase (GOx), followed by coating with tannic acid (TA) and ferrous glycinate (Fe[Gly]₂), resulted in color changes of the MS suspensions, which indicated the successful preparation of the MS/GOx@TA/Fe²⁺ NPs.

Fig. S21 TEM images of (a) MS NPs and (b) MS/GOx@TA/Fe²⁺ NPs with an average size of 175 nm.

Fig. S22 UV-vis absorption spectra of MS NPs, GOx, TA/Fe²⁺ and MS/GOx@TA/Fe²⁺

NPs, respectively.

Fig. S23 Zeta potential of MS and MS/GOx@TA/Fe²⁺ NPs.

Fig. S24 UV-vis absorption spectra (a) and optical photograph (b) of solutions containing MB, glucose, and MS/GOx@TA/Fe²⁺ NPs at different time points.

References

- J. Yu, Y. Feng, D. Sun, W. Ren, C. Shao and R. Sun, ACS Appl. Mater. Interfaces, 2022, 14, 10886–10897.
- L. Geng, S. Hu, M. Cui, J. Wu, A. Huang, S. Shi and X. Peng, *Carbohydr. Polym.*, 2021, 262, 117936.
- F. Mo, Y. Huang, Q. Li, Z. Wang, R. Jiang, W. Gai and C. Zhi, *Adv. Funct. Mater.*, 2021, **31**, 2010830.
- X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu, Y. Xia, Z. Nie and K. Sui, *Mater. Horiz.*, 2019, 6, 326–333.
- M. Wu, J. Chen, Y. Ma, B. Yan, M. Pan, Q. Peng, W. Wang, L. Han, J. Liu and H. Zeng, J. Mater. Chem. A, 2020, 8, 24718–24733.
- 6. X. Yuan, P. Wu, Q. Gao, J. Xu, B. Guo and Y. He, *Mater. Horiz.*, 2022, 9, 961–972.
- 7. S. Zeng, J. Zhang, G. Zu and J. Huang, Carbohydr. Polym., 2021, 267, 118198.
- A. Wang, Y. Wang, B. Zhang, K. Wan, J. Zhu, J. Xu, C. Zhang and T. Liu, *Chem. Eng. J.*, 2021, 411, 128506.
- H. Zhou, J. Lai, B. Zheng, X. Jin, G. Zhao, H. Liu, W. Chen, A. Ma, X. Li and Y. Wu, *Adv. Funct. Mater.*, 2021, **32**, 2108423.
- Q. Liang, X. Xia, X. Sun, D. Yu, X. Huang, G. Han, S. M. Mugo, W. Chen and Q. Zhang, *Adv. Sci.*, 2022, 9, 2201059.
- D. Chen, X. Zhao, X. Wei, J. Zhang, D. Wang, H. Lu and P. Jia, ACS Appl. Mater. Interfaces, 2020, 12, 53247–53256.
- J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma, H. Wei and S. Lü, *Adv. Funct. Mater.*, 2021, **32**, 2107404.
- 13. M. Ma, Y. Shang, H. Shen, W. Li and Q. Wang, Chem. Eng. J., 2021, 420, 129865.
- T. Zhu, Y. Cheng, C. Cao, J. Mao, L. Li, J. Huang, S. Gao, X. Dong, Z. Chen and Y. Lai, *Chem. Eng. J.*, 2020, **385**, 123912.
- J. Chen, L. Zhang, Y. Tu, Q. Zhang, F. Peng, W. Zeng, M. Zhang and X. Tao, *Nano Energy*, 2021, 88, 106272.
- K. Xu, K. Shen, J. Yu, Y. Yang, Y. Wei, P. Lin, Q. Zhang, C. Xiao, Y. Zhang and Y. Cheng, *Chem. Mater.*, 2022, **34**, 3311–3322.

- G. Ge, Y. Lu, X. Qu, W. Zhao, Y. Ren, W. Wang, Q. Wang, W. Huang and X. Dong, *ACS Nano*, 2020, 14, 218–228.
- X. Li, L. He, Y. Li, M. Chao, M. Li, P. Wan and L. Zhang, ACS Nano, 2021, 15, 7765–7773.
- H. Wei, Z. Wang, H. Zhang, Y. Huang, Z. Wang, Y. Zhou, B. B. Xu, S. Halila and J. Chen, *Chem. Mater.*, 2021, **33**, 6731–6742.
- 20. X. Liu, Q. Zhang and G. Gao, ACS Nano, 2020, 14, 13709-13717.
- 21. S. Xia, Q. Zhang, S. Song, L. Duan and G. Gao, Chem. Mater., 2019, **31**, 9522–9531.
- 22. Q. Zhang, X. Liu, J. Zhang, L. Duan and G. Gao, J. Mater. Chem. A, 2021, 9, 22615–22625.