Supplementary Information

Observation of ferromagnetism in CeCr₂Si₂C single crystals

Guobin Wang^{1,2}, Long Chen^{1,2}, Jun Deng¹, Yuxin Yang^{1,2}, Tao Sun¹, Zesheng Zhang³, Xu Chen^{1*}, Hui Li^{1,2*}

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Beijing Lattice Semiconductor Co., Ltd., Beijing 101300, China

E-mail: xchen@iphy.ac.cn or lihui2021@iphy.ac.cn

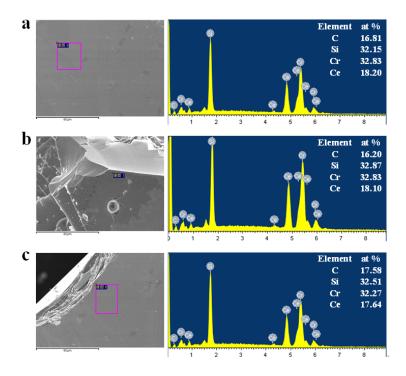
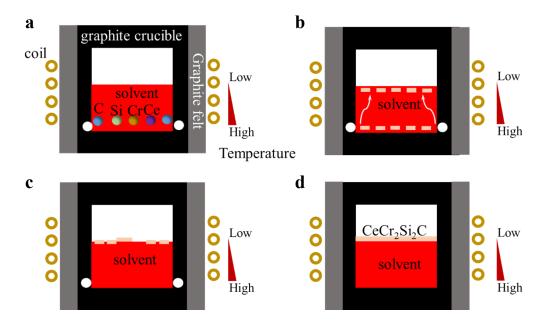



Fig. S1. EDXS spectra of CeCr₂Si₂C bulk single crystals.

Fig. S2. Illustration of the growth mechanism for CeCr₂Si₂C single crystals via high temperature solution technique.

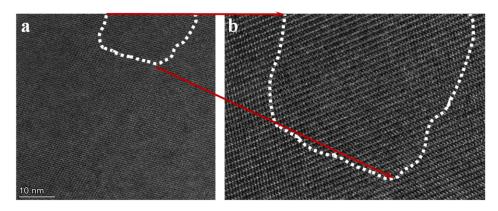
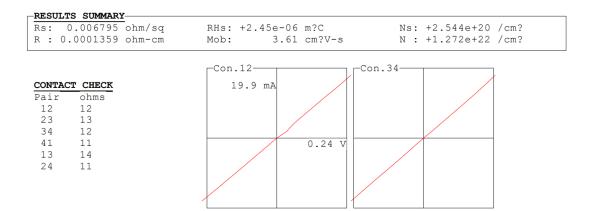



Fig. S3. (a) HRTEM and (b) magnified HRTEM images of $CeCr_2Si_2C$ single crystals, showing stacking disorders in the $CeCr_2Si_2C$ single crystals.

Fig. S4. (a) Hall resistivity (R - H) and (b) mobility (μ) measured in the temperature region of 2-300 K for $CeCr_2Si_2C$ bulk single crystals.

 $\textbf{Fig. S5.} \ \ \text{Hall measurement results of CeCr}_2 Si_2 C \ \ \text{single crystals}.$