Engineering g-C₃N₄ composited Fe-UIO-66 to in-situ generate robust single-

atom Fe sites for high-performance PEMFC and Zn-air battery

Lu An^{a,1}, Bin Chi^{a,1}, Yingjie Deng^a, Chao Chen^a, Xiaohua Deng^a, Ranjie Zeng^a, Yuying Zheng^a, Dai

Dang^a*, Xu Yang^a*, Xinlong Tian^b*

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China

^b State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China

*Corresponding author E-mail address: dangdai@gdut.edu.cn

¹ Lu An and Bin Chi contributed equally to this work.

Fig.S1. SEM images of a-c) Fe-N/MC, d-f) Fe-N/C-ref at different scales.

Fig.S2 a) Survey XPS spectra, high-resolution; b) Fe2p XPS spectra of UIO, Fe-N/C-ref, Fe-N/MC; c) Fe2p XPS spectra of Fe-N/MC.

Sample	C %	N %	Fe %
UIO-66	97.98	2.02	/
Fe-N/C-ref	97.77	1.91	0.32
Fe/N/MC	97.21	2.21	0.67

 Table S1. Fraction of the different elements present in UIO, Fe-N/C-ref, and Fe-N/MC.

Sample	Pyridinic N %	Fe-N _X %	Pyrrolic-N %	Graphitic-N %	Oxidized-N %
UIO-66	10.41	/	37.23	14.28	38.48
Fe-N/C-ref	11.44	6.97	27.86	16.94	42.28
Fe/N/MC	26.06	9.51	16.25	23.33	27.88

Table S2. Fraction of the different N species present in UIO, Fe-N/C-ref, and Fe-N/MC.

Fig.S3 CV curves of Fe-N/MC in N_2 and O_2 -saturated a) 0.1 M HClO₄ and b) 0.1 M KOH.

Fig.S4 LSV ORR curves of Fe-NCNTs in O₂- saturated a) 0.1 M HClO₄ and b) 0.1 M KOH.

Fig.S5 LSV ORR curves of Catalysts with FeCp with different doping levels in O_2 - saturated a) 0.1 M HClO₄ and b) 0.1 M KOH.

Fig.S6 ORR curves of Fe-N/MC obtained at different rotation rates in O₂-saturated a) 0.1 M HClO₄ and c) KOH; K–L plots of j^{-1} versus $\omega^{-1/2}$ on Fe-N/MC in O₂-saturated b) 0.1 M HClO₄ and d) KOH.

Fig.S7 CV curves before and after durability test of Fe-N/MC in O_2 -saturated a) 0.1 M HClO₄ and b) KOH.

Fig. S8 In 1 M KOH, (a) LSV curves for the OER of Fe-N/MC catalysts and Fe-N/C-ref catalysts at a scan rate of 10 mV s-1. (b) Tafel slope plot.

Fig.S9 Open-circuit plots of Zn–air battery with Fe-N/MC and 20% Pt/C as the air cathode, respectively.

Fig.S10 Hydrogen peroxide yields obtained from RRDE test results of Fe-N/C-ref, Fe-N/MC and Pt/C catalysts in oxygen-saturated 0.1 M HClO₄ solution.

Fig.S11. IV curves of Fe-N/MC MEA after 24h discharging test

Catalyst	E _{onset} vsRHE	E _{1/2} vsRHE	Catalyst loading (mg/cm²)	References
Fe-N/MC	0.95	0.85	0.5	This work
Fe/N/S-PC	0.97	0.87	0.5	1
Fe/N/C(4mlm)-OAc	0.95	0.844	0.6	2
Fe-N/C-155	1.09	0.85	0.5	3
FeN/C-800	0.923	0.809	0.1	4
Co/N/C	0.94	0.83	0.2	5
Fe ₃ C@NG-800-0.2	0.98	0.83	0.5	6
Fe/N/C	0.94	0.83	0.5	7
Fe-N/C	1.019	0.848	/	8
Fe3-NG	0.965	0.826	0.5	9
C-FeHZ8@g-C ₃ N ₄ -950	0.97	0.845	0.5	10

Table S3. Comparison of ORR performance of Fe-N/MC with other non-noble metal in alkaline medium

Catalyst	E _{onset} vsRHE	E _{1/2} vsRHE	Catalyst loading (mg/cm ²)	References
Fe-N/MC	0.88	0.76	0.5	This work
PpPD-Fe-C	0.826	0.718	0.9	11
PCN-FeCo/C	0.90	0.76	0.6	12
C-FeZIF-900-0.84	0.90	0.77	0.5	13
N, P-CGHNs	0.90	0.68	0.6	14
Fe-N-CNF	0.84	0.62	0.6	15
FeN ₄ /HOPC-c-1000	/	0.8	0.5	16
CeF ₃ -Fe/N/C	0.9	0.78	0.5	17
Zn/Co(mlm)2-P	0.88	0.76	0.5	18
Py-B12/C	/	0.78	0.5	19
SiO ₂ -Fe/N/C	/	0.823	0.5	20

Table S4. Comparison of ORR performance of Fe-N/MC with other non-noble metal in acid medium

Catalyst	Operation temperature	Catalyst loading	Maximum power density	Back Pressure(b	References
	(°C)	amount(m g cm ⁻²)	(mW cm ⁻²)	ar)	
Fe-N/MC	70	4.0	1150	2	This work
Fe/N/C-SCN	80	4.0	1030	2	21
CFeHZ8@gC ₃ N ₄ -	80	1.0	775	2	10
950					
Co-N-C@F127	80	4	870	1	22
(CM+PANI)-Fe-C	80	4	940	2	23
ZIF-FA-CNT-p	80	4.5	820	2	24
Fe/N/C(4mlm)-OAc	80	3	1330	2	3
SiO ₂ -Fe/N/C	80	2.7	880	2	20
Fe2-Z8-C	80	2.8	1141	2	25
Fe-MOF-100nm	94	4	1140	1.7	26
Fe/Phen/Z8	80	4	910	1	27

Table S5. Comparison of performance of the H_2/O_2 PEMFCs using the NPM cathode catalysts

Sample	Total Fe (wt.%)	Fe (after acid treatment) (wt.%)
Fe-N/MC	3.16	2.76
Fe-N/C-ref	2.07	1.48

 Table S6. The overall Fe content of Fe-N/MC and Fe-N/C-ref based on ICP-OES

Catalyst	Test environment	Initial current density (mA cm ⁻²)	Performance degradation rate	times	References
Fe-N/MC	H ₂ -O ₂	651	42.3%	24h	This work
Fe-ZIF'/CNT-1	H ₂ -O ₂	615	34%	30h	28
Fe-N-C	H2-Air	500	58%	23h	29
FeO _x @GC-	H ₂ -O ₂	440	28.9%	150h	30
NOMC					
Fe/N/C-SCN	H ₂ -O ₂	1600	71.9%	100h	21
CFeHZ8@gC ₃ N ₄ -	H ₂ -O ₂	400	51.1%	8h	22
950					
ZIF-FA-CNT-p	H ₂ -O ₂	1200	79.1%	60h	25
Fe/N/C(4mlm)- OAc	H ₂ -O ₂	2600	80.3%	35h	2
CeF3-Fe/N/C	H ₂ -O ₂	120	46%	24h	16
SA-3DNC	H ₂ -O ₂	380	25%	20h	31
C-FeZIF-1.44-950	H ₂ -O ₂	1000	32.2%	10h	32

Table S7. Comparison of the durability performance of PEMFCs using NPM cathode catalysts

References

- Zheng, L.; Dong, Y. Y.; Chi, B.; Cui, Z. M.; Deng, Y. J.; Shi, X. D.; Du, L.; Liao, S. J., UIO-66-NH2-Derived Mesoporous Carbon Catalyst Co-Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs. *Small* 2019, *15* (4).
- [2] Li, Y. Y.; Zhang, P. Y.; Wan, L. Y.; Zheng, Y. P.; Qu, X. M.; Zhang, H. K.; Wang, Y. S.; Zaghib, K.; Yuan, J. Y.; Sun, S. H.; Wang, Y. C.; Zhou, Z. Y.; Sun, S. G., A General Carboxylate-Assisted Approach to Boost the ORR Performance of ZIF-Derived Fe/N/C Catalysts for Proton Exchange Membrane Fuel Cells. *Adv Funct Mater* 2021, *31* (15).
- [3] Ye, G. Y.; He, Q.; Liu, S. Q.; Zhao, K. M.; Su, Y. K.; Zhu, W. W.; Huang, R. J.; He, Z., Cage-confinement of gas-phase ferrocene in zeolitic imidazolate frameworks to synthesize high-loading and atomically dispersed Fe-N codoped carbon for efficient oxygen reduction reaction. J Mater Chem A 2019, 7 (27), 16508-16515.
- [4] Lin, L.; Zhu, Q.; Xu, A. W., Noble-Metal-Free Fe-N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under Both Alkaline and Acidic Conditions. *Journal of the American Chemical Society* 2014, *136* (31), 11027-11033.
- [5] Li, Z. H.; Shao, M. F.; Zhou, L.; Zhang, R. K.; Zhang, C.; Wei, M.; Evans, D. G.; Duan, X., Directed Growth of Metal-Organic Frameworks and Their Derived Carbon-Based Network for Efficient Electrocatalytic Oxygen Reduction. *Advanced Materials* **2016**, *28* (12), 2337-2344.
- [6] Jiang, H. L.; Yao, Y. F.; Zhu, Y. H.; Liu, Y. Y.; Su, Y. H.; Yang, X. L.; Li, C. Z., Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. *Acs Appl Mater Inter* 2015, 7 (38), 21511-21520.
- [7] Ferrero, G. A.; Preuss, K.; Marinovic, A.; Jorge, A. B.; Mansor, N.; Brett, D. J. L.; Fuertes, A. B.; Sevilla, M.; Titirici, M. M., Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. *Acs Nano* 2016, *10* (6), 5922-5932.
- [8] Zhang, W.; Xu, X.; Zhang, C.; Yu, Z.; Zhou, Y.; Tang, Y.; Wu, P.; Guo, S., 3D Space-Confined Pyrolysis of Double-Network Aerogels Containing In-Fe Cyanogel and Polyaniline: A New Approach to Hierarchically Porous Carbon with Exclusive Fe-N-x Active Sites for Oxygen Reduction Catalysis. *Small Methods* 2017, 1 (8).
- [9] Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J., Pyridinic-Nitrogen-Dominated Graphene Aerogels with Fe-N-C Coordination for Highly Efficient Oxygen Reduction Reaction. Adv Funct Mater 2016, 26 (31), 5708-5717.
- [10] Deng, Y. J.; Chi, B.; Tian, X. L.; Cui, Z. M.; Liu, E. S.; Jia, Q. Y.; Fan, W. J.; Wang, G. H.; Dang, D.; Li, M. S.; Zang, K. T.; Luo, J.; Hu, Y. F.; Liao, S. J.; Sun, X. L.; Mukerjee, S., g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. *J Mater Chem A* 2019, 7 (9), 5020-5030.
- [11] Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D. W.; Su, D. S., Unravelling the Structure of Electrocatalytically Active Fe-N Complexes in Carbon for the Oxygen Reduction Reaction. *Angew Chem Int Edit* 2014, 53 (40), 10673-10677.
- [12] Deng, Y. J.; Dong, Y. Y.; Wang, G. H.; Sun, K. L.; Shi, X. D.; Zheng, L.; Li, X. H.; Liao, S. J., Well-Defined ZIF-Derived Fe-N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts. *Acs Appl Mater Inter* 2017, 9 (11), 9699-9709.
- [13] Yang, J.; Sun, H. Y.; Liang, H. Y.; Ji, H. X.; Song, L.; Gao, C.; Xu, H. X., A Highly Efficient Metal-Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. *Advanced Materials* 2016, 28 (23), 4606-4613.
- [14] Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H., Iron Carbide Nanoparticles

Encapsulated in Mesoporous Fe-N-Doped Carbon Nanofibers for Efficient Electrocatalysis. *Angew Chem Int Edit* **2015**, *54* (28), 8179-8183.

- [15] Qiao, M.; Wang, Y.; Wang, Q.; Hu, G.; Mamat, X.; Zhang, S.; Wang, S., Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells. *Angew Chem Int Edit* 2020, 59 (7), 2688-2694.
- [16] Yin, X.; Utetiwabo, W.; Sun, S. H.; Lian, Y. M.; Chen, R. J.; Yang, W., Incorporation of CeF3 on singleatom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. *J Catal* 2019, *374*, 43-50.
- [17] Chong, L. N.; Goenaga, G. A.; Williams, K.; Barkholtz, H. M.; Grabstanowicz, L. R.; Brooksbank, J. A.; Papandrew, A. B.; Elzein, R.; Schlaf, R.; Zawodzinski, T. A.; Zou, J. X.; Ma, S. Q.; Liu, D. J., Investigation of Oxygen Reduction Activity of Catalysts Derived from Co and Co/Zn Methyl-Imidazolate Frameworks in Proton Exchange Membrane Fuel Cells. *Chemelectrochem* **2016**, *3* (10), 1541-1545.
- [18] Chang, S. T.; Wang, C. H.; Du, H. Y.; Hsu, H. C.; Kang, C. M.; Chen, C. C.; Wu, J. C. S.; Yen, S. C.; Huang, W. F.; Chen, L. C.; Lin, M. C.; Chen, K. H., Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. *Energ Environ Sci* 2012, 5 (1), 5305-5314.
- [19] Li, J.; Chen, M.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; Lei, C.; Xu, H.; Sterbinsky, G. E.; Feng, Z.; Su, D.; More, K. L.; Wang, G.; Wang, Z.; Wu, G., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. *Nature Catalysis* 2018, *1* (12), 935-945.
- [20] Yang, X. H.; Wang, Y. C.; Zhang, G. X.; Du, L.; Yang, L. J.; Markiewicz, M.; Choi, J. Y.; Chenitz, R.; Sun, S. H., SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. *Appl Catal B-Environ* 2020, 264.
- [21] Y.C. Wang, Y.J. Lai, L. Song, Z.Y. Zhou, J.G. Liu, Q. Wang, X.D. Yang, C. Chen, W. Shi, Y.P. Zheng, M. Rauf, S.G. Sun, S-Doping of an Fe/N/C ORR Catalyst for Polymer Electrolyte Membrane Fuel Cells with High Power Density, Angew Chem Int Edit, 54 (2015) 9907-9910
- [22] He, Y.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J.; Chen, M.; Myers, D.; Su, D.; More, K. L.; Wang, G.; Litster, S.; Wu, G., Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. *Energ Environ Sci* **2019**, *12* (1), 250-260.
- [23] Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Mukerjee, S., Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metalnitrogen coordination. *Nature Communications* 2015, 6.
- [24] Zhang, C.; Wang, Y. C.; An, B.; Huang, R. Y.; Wang, C.; Zhou, Z. Y.; Lin, W. B., Networking Pyrolyzed Zeolitic Imidazolate Frameworks by Carbon Nanotubes Improves Conductivity and Enhances Oxygen-Reduction Performance in Polymer-Electrolyte-Membrane Fuel Cells. *Advanced Materials* 2017, 29 (4).
- [25] Liu, Q.; Liu, X.; Zheng, L.; Shui, J., The Solid-Phase Synthesis of an Fe-N-C Electrocatalyst for High-Power Proton-Exchange Membrane Fuel Cells. *Angew Chem Int Edit* 2018, 57 (5), 1204-1208.
- [26] Uddin, A.; Dunsmore, L.; Zhang, H. G.; Hu, L. M.; Wu, G.; Litster, S., High Power Density Platinum Group Metal-free Cathodes for Polymer Electrolyte Fuel Cells. Acs Appl Mater Inter 2020, 12 (2), 2216-2224.
- [27] Fu, X. G.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G. P.; Higgins, D. C.; Zhang, Y. N.; Hoque, M. A.; Chen, Z. W., In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymer-Electrolyte-Membrane Fuel Cells. *Advanced Materials* 2017, 29 (7).
- [28] Xia, D. S.; Tang, F.; Yao, X. Z.; Wei, Y. P.; Cui, Y. F.; Dou, M.; Gan, L.; Kang, F. Y., Seeded growth

of branched iron-nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode. *Carbon* **2020**, *162*, 300-307.

- [29] F. Xiao, G.L. Xu, C.J. Sun, I. Hwang, M.J. Xu, H.W. Wu, Z.D. Wei, X.Q. Pan, K. Amine, M.H. Shao, Durable hybrid electrocatalysts for proton exchange membrane fuel cells, Nano Energy, 2020, 77.
- [30] K. Wang, H.X. Chen, X.F. Zhang, Y.X. Tong, S.Q. Song, P. Tsiakaras, Y. Wang, Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC, Appl Catal B-Environ, 2020, 264.
- [31] Y.H. Qian, Q.T. Liu, E. Sarnello, C.H. Tang, M.L. Chng, J.L. Shui, T. Li, S.J. Pennycook, M. Han, D. Zhao, MOF-Derived Carbon Networks with Atomically Dispersed Fe-N-x Sites for Oxygen Reduction Reaction Catalysis in Acidic Media, Acs Mater Lett, 2019, 1 (1), 37-43.
- [32] Y. Deng, B. Chi, J. Li, G. Wang, L. Zheng, X. Shi, Z. Cui, L. Du, S. Liao, K. Zang, J. Luo, Y. Hu, X. Sun, Atomic Fe-Doped MOF-Derived Carbon Polyhedrons with High Active-Center Density and Ultra-High Performance toward PEM Fuel Cells, Adv Energy Mater, 2019, 9 (13).