Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Interface, vacancy and morphology engineering synergistically improve In₂S₃@Cu₂S electrocatalytic performance for pH-universal HER

Yongkai Sun^a, Wenyuan Sun^b, Guicun Li^b, Lei Wang^c, Jianfeng Huang^d, Alan

Meng^{c,*} and Zhenjiang Li^{b,*}

^aCollege of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, P. R. China

^b College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China

^c Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China

^d School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an 710021, Shanxi, P. R. China.

* Corresponding author. Tel.: +86 532 88956228; fax: +86 532 88956228.

E-mail address: <u>zhenjiangli@qust.edu.cn</u>(Zhenjiang Li) E-mail address: <u>alanmengqust@163.com</u> (Alan Meng

Fig. S1. The SEM (a) image and XRD pattern (b) of Cu(OH)₂/CF

Fig. S2. The SEM (a, b) image and XRD pattern (c) of CuInS₂/CF.

Fig. S3. The SEM image of (a) $In_2S_3@Cu_2S$ NAs/CF-1 and (b) $In_2S_3@Cu_2S$ NAs/CF-3.

	XPS Atomic conc. [%]	EDS Atomic conc. [%]
Cu	31.53	29.55
In	22.87	26.82
S	45.6	43.63

Table S1 the atomic percentage of each element in $In_2S_3@Cu_2S NAs/CF-2$ from XPS and EDS.

Fig. S4. Voltammograms of the (a) $In_2S_3@Cu_2S/CF-1$, (b) $In_2S_3@Cu_2S/CF-2$, (c) $In_2S_3@Cu_2S/CF-3$ and (d) Cu_2S/CF at various scan rates (10-50 mV s⁻¹) in 0.5 M H₂SO₄.

Table S2 The charge transfer resistances obtained from Nyquist plots in $0.5 \text{ M H}_2\text{SO}_4$ solution.

Samples	$R_{ct}(\Omega)$	$R_s(\Omega)$
In ₂ S ₃ @Cu ₂ S/CF-1	8.48	1.093
$In_2S_3@Cu_2S/CF-2$	2.32	0.8122
$In_2S_3@Cu_2S/CF-3$	5.09	0.9236
Cu ₂ S/CF	14.72	1.16

Fig. S5. Voltammograms of the (a) $In_2S_3@Cu_2S/CF-1$, (b) $In_2S_3@Cu_2S/CF-2$, (c) $In_2S_3@Cu_2S/CF-3$ and (d) Cu_2S/CF at various scan rates (10-50 mV s⁻¹), (e) C_{dl} and (f) EIS of $In_2S_3@Cu_2S/CF-1$, $In_2S_3@Cu_2S/CF-2$, $In_2S_3@Cu_2S/CF-3$, and Cu_2S/CF in 1M KOH.

Table S3 The charge transfer resistances obtained from Nyquist plots in 1 M KOH solution.

Samples	$R_{ct}(\Omega)$	$R_s(\Omega)$
$In_2S_3@Cu_2S/CF-1$	7.83	0.8851
$In_2S_3@Cu_2S\ /CF-2$	3.29	1.081
$In_2S_3@Cu_2S\ /CF-3$	6.24	0.6742
Cu ₂ S/CF	15.36	1.154

Fig. S6. Voltammograms of the (a) $In_2S_3@Cu_2S/CF-1$, (b) $In_2S_3@Cu_2S/CF-2$, (c) $In_2S_3@Cu_2S/CF-3$ and (d) Cu_2S/CF at various scan rates (10–50 mV s⁻¹), (e) C_{dl} and (f) EIS of $In_2S_3@Cu_2S/CF-1$, $In_2S_3@Cu_2S/CF-2$, $In_2S_3@Cu_2S/CF-3$, and Cu_2S/CF in 1M PBS.

Fig. S7. The ECSA of In₂S₃@Cu₂S/CF-1, In₂S₃@Cu₂S/CF-2, In₂S₃@Cu₂S/CF-3 and Cu₂S/CF in (a) 0.5 M H2SO4, (b) 1 M KOH and (c) 1 M PBS.

Samples	$R_{ct}(\Omega)$	$R_s(\Omega)$
In ₂ S ₃ @Cu ₂ S/CF-1	6.28	1.105
$In_2S_3@Cu_2S/CF-2$	3.55	1.074
$In_2S_3@Cu_2S/CF-3$	7.66	0.8565
Cu ₂ S/CF	19.29	1.744

Table S4 The charge transfer resistances obtained from Nyquist plots in 1 M PBS solution.

Fig. S8. The SEM image (a) and XRD pattern (b) of In₂S₃@Cu₂S/CF-2 after performing a 150 h test.

Table S5 HER activity comparison between In₂S₃@Cu₂S/CF-2 with the recently reported pHuniversal non-noble-metal catalysts in different solutions. (η_{10} : Overpotentials at a current density of 10 mA cm⁻²)

Catalysts	0.5 M H ₂ SO ₄	1 M PBS	1M KOH	Ref.
	η ₁₀ (mV)	η ₁₀ (mV)	η ₁₀ (mV)	
NiCoP/NF	105	97	98	1
W ₂ C/WP@NC-2	196.2	/	116.37	2
Fe-Mo ₂ C@NCF	129	130	65	3
W-MoP	63	71	82	4
Co-P@PC	72	91	/	5

S-MoP NPL	86	142	104	6
CoMoNiS-NF-31	103	117	113	7
MoS ₂ /NLG-3	110	142	145	8
MoP/Mo ₂ N	89	91	89	9
$\mathrm{Co}_{0.5}\mathrm{W}_{0.5}\mathrm{S}_{\mathrm{x}}$	200	198	189	10
MoPS	92	/	158	11
Cu@WC	92	173	119	12
Fe-(NiS ₂ /MoS ₂)/CNT	98	127	87	13
MoS ₂ /NLG-3/CFP	110	142	145	14
$Co_{0.97}Ti_{0.03}SP$	44	/	132	15
$In_2S_3@Cu_2S/CF-2$	42	78	61	This work

References

1 L. Zhang, F. Ye, Z. Y. Wu, L. Jiang, Q. Liu, R. L. Pang, Y. Liu, L. F. Hu. Small Methods, 2022, 6, 2200515.

2 P. Wei, X. P. Sun, M. H. Wang, J. H. Xu, Z. M. He, X. G. Li, F. Y. Cheng, Y. Xu, Q. Li, J. T.

Han, H. Yang, Y. H. Huang. ACS Appl. Mater. Inter., 2021, 13, 53955-53964.

3 J. J. Huang, J. Y. Wang, R. K. Xie, Z. H. Tian, G. L. Chai, Y. W. Zhang, F. L. Lai, G. J. He,

C. T. Liu, T. X. Liu, P. R. Shearing, D. J. L. Brett. J. Mater. Chem. A, 2020, 8, 19879-19886.

4 S. L. Fereja, P. Li, J. H. Guo, Z. Y. Fang, Z. W. Zhang, Z. H. Zhuang, X. H. Zhang, K. F. Liu, W. Chen. ACS Appl. Nano Mater., 2021, **4**, 5992-6001.

5 J. Wu, D. Wang, S. Wan, H. Liu, C. Wang, X. Wang. Small, 2020, 16, 1900550.

6 K. Liang, S. Pakhira, Z. Yang, A. Nijamudheen, L. Ju, M. Wang, C. I. Aguirre-Velez, G. E. Sterbinsky, Y. Du, Z. Feng, J. L. Mendoza-Cortes, Y. Yang. ACS Catal., 2019, 9, 651-659.

7 Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S.

Ma, P. Zapol, M. G. Kanatzidis. J. Am. Chem. Soc., 2019, 141, 10417-10430.

8 J. Y. Qin, C. Xi, R. Zhang, T. Liu, P. C. Zou, D. Y. Wu, Q. J. Guo, J. Mao, H. L. Xin, J. Yang. ACS Catal., 2021, **11**, 4486-4497.

9 Y. Gu, A. P. Wu, Y. Q. Jiao, Hu. R. Zheng, X. Q. Wang, Y. Xie, . Wang, C. G. Tian, H. G. Fu. Angew. Chem., 2021, 133, 6747-6755.

10 K. Fan, H. Y. Zou, N. V. R. A. Dharanipragada, L. Z. Fan, A. K. Inge, L. L. Duan, B. B. Zhang,L. C. Sun. J. Mater. Chem. A, 2021, 9, 11359-11369.

11 Y. Huang, X. Song, J. Deng, C. Zha, W. Huang, Y. Wu, Y. Li. Appl. Catal. B: Environ., 2019, 245, 656-661.

12 M. Q. Yao, B. J. Wang, B. L. Sun, L. F. Luo, Y. J. Chen, J. W. Wang, N. Wang, S. Komarneni,X. B. Niu, W. C. Hu. Appl. Catal. B: Environ., 2021, 280, 119451.

13 C. Y. Li, M. D. Liu, H. Y. Ding, L. Q. He, E. Z. Wang, B. L. Wang, S. S. Fan, K. Liu. J. Mater. Chem. A, 2020, **8**, 17527-17536.

14 J. Y. Qin, C. Xi, R. Zhang, T. Liu, P. C. Zou, D. Y. Wu, Q. J. Guo, J. Mao, H. L. Xin, J. Yang. ACS Catal., 2021, 11, 4486-4497.

15 V. Q. Bui, A. Kumar, H. T. D. Bui, J. Lee, Y. Hwang, H. M. Le, Y. Kawazoe, H. Lee. Chem.

Mater., 2020, **32**, 9591-9601.