Electronic Supplementary Information

DMAI-drived all-inorganic antimony-based perovskite-inspired solar cells with record open-circuit voltage

Yixin Guo,ª Fei Zhao,ʰ,* Peizhi Yang,ˤ,* Minjie Gao,ª Junhao Shen,ª Jiahua Tao,ª Jinchun Jiang ª and

Junhao Chu d,e

- ^a Department of Physics, Shanghai Normal University, Shanghai, 200233, China
- **b School of Photoelectric Engineering, Changzhou Institute of Technology,** Changzhou, Jiangsu, 213002, China
- ^cKey Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education,Yunnan Normal University,Kunming,650500, China
- ^d Department of Materials, Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China e Institute of Optoelectronics, Fudan University,Shanghai 200241, China

*Corresponding author.

E-mail addresses: zhaofei@czu.cn;pzyang@hotmail.com

Experimental Procedures

*Device Fabrication:*Pre-etched fluorine doped tin oxide (FTO) substrates were firstly washed with soap water, deionized water, ethanol and dried by high-purity nitrogen gas. Then, 100nm $Nb₂O₅$ compact layer films were sputtered by a high vacuum sputter system (Beijing Technol Science, JCP-450) and annealed in an oven at 500°C for 30 min. The detail of sputter process can be found in related references. To form the RbCl/Nb₂O₅, 1mg/mL RbCl (Sigma-Aldrich, 99.95%) aqueous solution was spincoated on $Nb₂O₅$ surface and then annealed at 500°C for 30 min. The precursor solution was prepared by dissolving 0.75 M CsI (Sigma-Aldrich, 99.9%), 0.25 M SbI₃ (Sigma-Aldrich, 98%) and 0.3125 M SbCl₃ (Sigma-Aldrich, 99.95%) in DMF (Sigma-Aldrich, 99.8%) solution. The DMAI incorporated $Cs_3Sb_2Cl_xI_{9-x}$ films were fabricated by adding the certain amount DMAI (Sigma-Aldrich) in precursor solution.Then, the precursor solution was spin-coated onto $Nb₂O₅$ coated substrates at 3000 rpm for 30 s and post-annealed under SbI₃ vapor environment at 250°C for 10 min. For the hole transport layer (HTL) layer, 6 mg/mL P3HT (Sigma-Aldrich) solution were spincoated on the top of $Cs_3Sb_2Cl_xI_{9-x}$ film at 3000 rpm and annealed for 5 min at 100°C. After the films cooled to room temperature, commercial carbon paste was screenprinted on the top of HTL layer and dried on a hot plate at 120°C for 15 min.

Characterization: Grazing Incidence X-ray diffraction (GIXRD) measurements were carried out by a X-ray Powder diffractometer (Bruker D8 Advance). X-ray photoelectron spectroscopy (XPS) measurements were conducted by a Thermo SCIENTIFIC ESCALAB 250X with a He-discharge UV source (21.2 eV) for ultraviolet photoelectron spectroscopy (UPS) measurements. Time-of-flight secondary-ion massspectrometry (ToF-SIMS) depth profiles were measured with a Bruker ultraflextreme MALDI-TOF. Optical absorbance spectra of the films were recorded by a Cary5000 UV-VIS-NIR spectrophotometer. Scanning Electron Microscopy (SEM) measurements were characterized by a HITACHI S-4800 SEM. The photoluminescence (PL) and transient-photoluminescence (TRPL) spectra were measured by a HORIBA spectrophotometer with a excitation source of 532 nm. The current density–voltage (J-V) characteristics of PISCs were conducted by a Keithley 2400 digital source meter with a solar simulator (Newport Oriel Sol3A) calibrated to AM 1.5, 100 mW/cm² using a standard silicon photodiode (Newport Oriel 91150V) with an m masked active area of 0.09 $cm²$. The incident photo-to-current conversion efficiency (IPCE) was performed by QTEST 1000AD Station using a calibrated reference Si-cell. The electrochemical impedance spectroscopy (EIS) was recorded by a Bio-Logic VMP3 electrochemical workstation under dark.

Figure S1.XRD patterns of A₃Sb₂Cl_xI_{9-x} films (A=DMA/Cs).

Figure S2. Optical absorbance spectra of of DMA₃Sb₂Cl_xI_{9-x} film.

Figure S3.PL spectra for Cs₃Sb₂Cl_xI_{9-x} films with/without DMAI additive.

Figure S4.SEM picture of of Cs₃Sb₂Cl_{xl9-x} films prepared with different CsI/DMAI ratio.

Figure S5. (a) Enlarged and (b) overall Nyquist plots of Cs₃Sb₂Cl_xI_{9-x} PISCs with/without DMAI additive.

Figure S6. IPCE curves for Cs₃Sb₂Cl_xI_{9-x} PISCs with/without DMAI additive.

Figure S7. Optical absorbance for Cs₃Sb₂Cl_{xl9-x} film on Nb₂O₅ and RbCl/Nb₂O₅

substrates.

Figure S8. (a) XPS spectra for Cl 2p core level.(b) XPS spectra for Rb 3d core level.

Figure S9. Optical transmittance for RbCl/Nb₂O₅ and Nb₂O₅ film.

Figure S10. Fermi edges and secondary electron cutoff edges of D-Cs₃Sb₂Cl_{xl9-x} film with RbCl interface modification.

Figure S11. J-V curves for PISCs with different RbCl interface modification concentration.

Figure S12. Stable output curve of J_{sc} and PCE for PISC with RbCl interface modification at maximum power point.

Figure S13. J-V curves for PISC with RbCl interface modification under different scanning directions.

Table S1. TRPL parameters for Cs₃Sb₂Cl_xI_{9-x} films with/without DMAI additive.

Sample	H	(ns T1	મ.	τ_2 (ns,	τ _{aνg} (ns -
w/o DMAI	1.14	157 ، ت ـ	0.86	13.54	3.24
with DMAI	0.68	2.03	0.32	27.15	10.06

Table S2. EIS parameters of $\;$ Cs₃Sb₂Cl_xI_{9-x} PISCs with/without DMAI additive.

Sample	R、(ohm) D.	D R_rec (ohm).
w/o DMAI	83	47^{-}
with DMAI	69	9246

Table S3. Temperature-related J-V performance parameters of PISCs with DMAI

a Statistic performance from 16 individual devices

1110 91116961011.							
Sample	$V_{\alpha c} (V)$	J_{sc} (mA cm ⁻²)	FF (%)	PCE (%)			
w/o RbCl	$0.89(0.87 \pm 0.01)^{a}$	5.21 (4.95 \pm 0.23)	59 (58 \pm 1.52)	2.74 (2.46 \pm 0.12)			
with RbCl	0.93 (0.91 \pm 0.01)	5.86 (5.75 \pm 0.18)	62 (60 \pm 1.14)	3.37 (3.15 \pm 0.12)			

Table S4. J-V performance parameters of PISCs with/without RbCl interface modification.

^a Statistic performance from 16 individual devices