Supporting Information

Controllable Vacancy Strategy Mediated by Organic Ligands of Nickel Fluoride Alkoxides for High-Performance Aqueous Energy Storage

Wei Shi, ‡^a Zeshuo Meng, ‡^a Zijin Xu, ^a Jian Xu, ^a Xucong Sun, ^a Haoshan Nan, ^a Chenxu Zhang, ^a Shansheng Yu, *^a Xiaoying Hu *^b and Hongwei Tian *^a

* Corresponding author.

^a Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China. E-mail: yuss@jlu.edu.cn, tianhw@jlu.edu.cn.

^b College of Science and Laboratory of Materials Design and Quantum Simulation,

Changchun University, Changchun 130022, China. E-mail: huxy@ccu.edu.cn.

‡ These authors contributed equally to this work.

Experimental Section

1. Chemicals and reagents

NiCl₂· $6H_2O$ was purchased from Shanghai Macklin Biochemical Co., Ltd. NH₄F was obtained from Xilong Science Co., Ltd. The urea was provided by Aladdin Industrial Corporation. The solvents ethanol, ethylene glycol, 1-propanol, and 1-butanol were all of analytical grade and purchased from Sinopharm Chemical Reagent Co., Ltd. K₃[Fe(CN)₆], Bi(NO₃)₃· $5H_2O$, polyvinylpyrrolidone (PVP), and HNO₃ were obtained from Beijing Chemical Works.

2. Synthesis of Ni(OH)₂

The Ni(OH)₂ sample was prepared by hydrolysis of urea. To this end, urea (0.451 g, 7.5 mmol) and NiCl₂· $6H_2O$ (0.444g, 1.87 mmol) were first dissolved in 20 ml ethylene glycol solvent (EG). The mixture was transferred to an autoclave and heated at 120 °C for 4 h to complete the reaction. The subsequent sample treatment process was the same as the mentioned above procedure.

3. Synthesis of HHP Bi₂O₃

The Bi-Fe TBA precursor was first prepared by solution method followed by etching using KOH solution to yield HHP Bi_2O_3 .¹ Specifically, 100 ml aqueous solution containing $K_3[Fe(CN)_6]$ (0.332 g) was added dropwise to 100 ml water and ethanol containing $Bi(NO_3)_3 \cdot 5H_2O$ (0.488 g), polyvinylpyrrolidone (PVP) (3.0 g), and HNO₃ (5 mL). The Bi-Fe TBA precursor was obtained after standing still at room temperature for 12 h. Next, Bi-Fe TBA precursor (10 mg) was added to 10 ml of KOH (0.05 g) solution and stirred for 2 h to obtain the HHP Bi_2O_3 sample.

Figure S1. XRD patterns of Ni(OH)₂ samples.

`

Figure S2. (a) Test plot and (b) top view of the structural computational model.

Figure S3. XRD patterns of the samples synthesized in (a) H₂O, (b) methanol, (c) 1-propanol, and 1-butanol solvents.

The XRD profiles of prepared samples using water without carbon chains and methanol with shorter carbon chain solvents under other unchanged experimental conditions are shown in **Figure S3**(a) and (b), respectively. Obviously, the diffraction peaks did not depict the crystal structural features of F-Ni-O₂-R₂, indicating failed synthesis. However, samples synthesized in alcohol solvents composed of carbon chains with two C atoms or more showed different XRD patterns (**Figure S3**(c)). Therefore, this method showed good universality with mechanism equations that can be expressed by Equations (1)-(3): $NiCl_2 \rightarrow Ni^{2+} + 2Cl^{-}$

$$NH_4F \rightarrow NH_4^+ + F^- \tag{1}$$

$$Ni^{2+} + (x+1)F^{-} + H_x - O_x - R_y \rightarrow F - Ni - O_x - R_y + xHF$$

The structural calculation of $F-Ni-O_2-R_2$ synthesized with ethylene glycol solvent (Figure 1a) revealed a distance between the H element at the end of the carbon chain and the F element

(3)

of 1.682 Å. This value fitted well the distance range of hydrogen bonding. Therefore, hydrogen bonds were formed between the H and F atoms, and the mechanism of hydrogen bonding for stabilizing the structure could be deduced. In fact, Ni(OH)₂ could stably exist due to the strong ionic bond between Ni²⁺ and OH⁻ ions. As a single ion, F⁻ exhibited extremely strong electronegativity, but still displayed relatively weak electronegativity compared to OH⁻. The decrease in the electron attraction ability relative to OH⁻ rendered Ni-F bond less strong than that of Ni-OH, making it difficult to maintain the corresponding structure. However, the electron cloud of F⁻ shifted to the direction of the carbon chain after the introduction of hydrogen bonds, while F⁻ for Ni²⁺ side exhibited enhanced electropositivity. This caused the electron cloud of Ni²⁺ to move towards the F⁻ side, resulting in relatively stable structure. Therefore, hydrogen bonds can be generated to stabilize the structure for carbon chains with a length greater than or equal to 2, forming the corresponding F-Ni-O_x-R_y structure. The two phases of F-Ni-OH and F-Ni-OR could not be synthesized as expected using water and methanol, confirming the importance of introducing organic ligand structures and generating hydrogen bonds for structural stability.

Figure S4. SEM images (a, b) of F-Ni-O-R₂, (c, d) F-Ni-O-R₃, (e, f) F-Ni-O-R₄, and (g, h) Ni(OH)₂.

Figure S5. The energy dispersion spectra (EDS) mapping images of F-Ni-O₂-R₂ sample.

Figure S6. Nitrogen sorption isotherms of (a) F-Ni-O-R₂, (b) F-Ni-O-R₃, (c) F-Ni-O-R₄, and (d) Ni(OH)₂.

Figure S7. Pore size distributions of synthetic samples.

Figure S8. TGA curve of F-Ni-O₂-R₂ sample.

Figure S9. XRD patterns corresponding to different temperature stages in TGA of F-Ni-O₂- R_2 sample.

Figure S10. CV plots at 0.2-1.2 mV s⁻¹ of (a) F-Ni-O₂-R₂ electrode, (b) F-Ni-O-R₂ electrode, (c) F-Ni-O-R₃ electrode, (d) F-Ni-O-R₄ electrode, and (e) Ni(OH)₂ electrode.

Figure S11. GCD curves at 1-10 A g⁻¹ of (a) F-Ni-O₂-R₂ electrode, (b) F-Ni-O-R₂ electrode, (c) F-Ni-O-R₃ electrode, (d) F-Ni-O-R₄ electrode, and (e) Ni(OH)₂ electrode.

F-Ni-O ₂ -R ₂	
F-Ni-O-R ₂	
F-Ni-O-R ₃	
F-Ni-O-R ₄	
Ni(OH) ₂	

Figure S12. The fitting equivalent circuit models of prepared candidate electrodes.

Figure S13. XRD patterns of F-Ni- O_2 - R_2 sample loaded on carbon paper before and after preactivation (Ni(OH)₂ and NiOOH referenced to PDF#73-1520 and PDF#06-0075 cards, respectively).

Figure S14. Raman pattern of F-Ni-O₂-R₂ sample after preactivation.

Figure S15. IR spectrum of F-Ni-O₂-R₂ sample after preactivation.

Figure S16. HRTEM image of F-Ni-O₂-R₂ samples after preactivation.

Figure S17. Comparison of EPR signals of F-Ni-O₂-R₂ samples before and after activation.

Figure S18. Raman spectrum of F-Ni-O₂-R₂ sample in the initial state.

Figure S19. GCD curves at 2 A g^{-1} of F-Ni-O₂-R₂ electrode in neutral electrolyte: (a) 0.5 M LiCl and (b) 3 M KCl.

Figure S20. SAED patterns of F-Ni- O_2 - R_2 electrode in fully charged (a) and discharged (b) states after preactivation.

Figure S21. *Ex-situ* HRTEM patterns of F-Ni-O₂-R₂ electrode in fully charged (a) and discharged (b) states after preactivation. (c) and (d) Selected areas in (a) and (b), respectively.

Figure S22. (a) CV curve at 0.2 mV s⁻¹ of F-Ni-O₂-R₂ after preactivation. (b) *Ex-situ* XRD patterns of F-Ni-O₂-R₂ derivatives with different discharge/charge states, corresponding to the redox peak positions in (a).

Ex-situ XRD was performed to obtain structural information of the generated species. As shown in **Figure S22**(a), the valence state changes of nickel in CV curve during charge were recorded as 0.32, 0.44, 0.48, and 0.54 V (denoted as Cx, where x is the charging voltage), while the values during discharge were 0.52, 0.34, 0.28, and 0.20 V (denoted as Dy, where y is the discharge voltage). In **Figure S22**(b), the original Ni₄OHF₇ signal completely disappeared after preactivation of F-Ni-O₂-R₂ electrode and replaced by the new peak signals of NiOOH and Ni(OH)₂. In addition, the signal of NiOOH during the charging process (potential range 0.32 V-0.54 V) showed an increasing trend, indicating the gradual conversion of Ni(OH)₂ to NiOOH. At voltage exceeding 0.55 V and the start of discharge stage, the characteristic peaks related to Ni(OH)₂ became more obvious to complete the reversible phase transition of the energy storage process.

Figure S23. (a) XRD patterns of synthesized HHP Bi₂O₃ sample, (b) CV plots at 1-10 mV s⁻¹, (c) GCD curves at 1-10 A g⁻¹, and (d) Nyquist plots of HHP Bi₂O₃ electrode.

Figure S24. CV curves of F-Ni-O₂-R₂ and HHP Bi₂O₃ electrodes at the scan rate of 1 mV s⁻¹.

Figure S25. The energy storage device assembled by two sets of $F-Ni-O_2-R_2//HHP Bi_2O_3$. (a) Device starts to light the LED bulb. (b) Device continues to supply power to the LED bulb after 30 min.

Supplemental tables

Sample	PDF card	Crystal system	Space group	Cell(a×b×c) Å
F-Ni-O ₂ -R ₂	28-0697	hexagonal	P-3m1 (164)	2.973×2.973×4.598
Ni(OH) ₂	73-1520	hexagonal	P-3m1 (164)	3.114×3.114×4.617
Ni(OH) ₂	14-0117	hexagonal	P-3m1 (164)	3.126×3.126×4.605

Table S1. The crystalline parameters of F-Ni-O₂-R₂ and Ni(OH)₂.

Table S2. Diffraction peak positions and corresponding crystal planes in XRD profiles.

2	35.1°	40.4°	53.9°	63.0°	72.3°	74.2°	77.0°	87.5°	95.5°
Theta									
Crystal	(100)	(011)	(012)	(110)	(103)	(200)	(112)	(202)	(104)
planes									

Electrode	Electrolyte	Specific capacitance	Reference
F-Ni-O ₂ -R ₂	3 M KOH + 0.5 M	2975.0 F g ⁻¹ at 1 A g ⁻¹	This work
	LiOH		
NiCoMoS@LDH/NF	3 М КОН	2968.8 F g ⁻¹ at 1 A g ⁻¹	2
Ni-MOFs/V ₂ CT _x -	1 M KOH	2453 F g ⁻¹ at 1 A g ⁻¹	3
MXene			
F-CoNi-A	1 M KOH	2476.0 F g ⁻¹ at 1 A g ⁻¹	4
NiCoP@C@Ni(OH) ₂	3 М КОН	2300.8 F g ⁻¹ at 1 A g ⁻¹	5
Ni-HF	2 M KOH	2030.3 F g ⁻¹ at 1 A g ⁻¹	6
Co-Zn(OH)F	2 M KOH	1970.0 F g ⁻¹ at 1 A g ⁻¹	7
NiCoP-CoP	2 M KOH	1969 F g ⁻¹ at 1 A g ⁻¹	8
KNiF ₃ @CNTs-8	3 M KOH + 0.5 M	1642.8 F g ⁻¹ at 1 A g ⁻¹	9
	LiOH		
Al-Co(OH)F	2 M KOH	1576 F g ⁻¹ at 1 A g ⁻¹	10
Co-Ni-B-S	6 M KOH	1281 F g ⁻¹ at 1 A g ⁻¹	11
CoNiO ₂ -Ar	6 M KOH	1172.6 F g ⁻¹ at 1 A g ⁻¹	12
Ni ₃ Co ₁ WO ₄ /HPC	6 M KOH	1084 F g ⁻¹ at 1 A g ⁻¹	13
Ti ₃ C ₂ /Ni-Co-Al-	1 M KOH	748.2 F g ⁻¹ at 1 A g ⁻¹	14
LDH			

Table S3. Comparison of the capacitance obtained in this work with reported values.

Electrode	Specific capacitance (F g ⁻¹)					
	1 A g ⁻¹	2 A g ⁻¹	3 A g ⁻¹	5 A g ⁻¹	8 A g ⁻¹	10 A g ⁻¹
F-Ni-O ₂ -R ₂	2975.0	2735.0	2533.5	2216.3	2136.0	2107.5
F-Ni-O-R ₂	2610.0	2451.5	2355.0	2222.5	2066.0	1960.0
F-Ni-O-R ₃	2167.0	2030.0	1939.5	1798.8	1636.0	1537.5
F-Ni-O-R ₄	2015.0	1860.0	1776.8	1662.5	1514.0	1425.0
Ni(OH) ₂	1680.0	1300.0	1207.5	1075.0	898.0	777.5

Table S4. The specific capacitances under current densities of 1-10A g^{-1} .

Table S5. Fitting results of prepared electrodes obtained from the EIS curves.

Electrode	$\operatorname{Rs}(\Omega)$	Rct (Ω)	Cdl (F)	W (Yo,
				$S \cdot sec^{0.5}$)
F-Ni-O ₂ -R ₂	0.6459	0.4656	1.52×10^{-3}	0.07463
F-Ni-O-R ₂	0.7017	0.5270	1.21×10 ⁻³	0.5635
F-Ni-O-R ₃	0.6881	1.679	2.52×10 ⁻³	0.5850
F-Ni-O-R ₄	0.9383	2.277	7.00×10 ⁻⁵	0.3761
Ni(OH) ₂	0.7545	3.919	1.965×10 ⁻³	0.3157

Sample	Resistivity ($\Omega \cdot m$)	Conductivity (S/m)
F-Ni-O ₂ -R ₂ before	6.4202	0.1558
preactivation	6.3394	0.1577
F-Ni-O ₂ -R ₂ after	0.5738	1.7428
preactivation	0.5594	1.7876

Table S6. Comparison of resistivity test results of $F-Ni-O_2-R_2$ before preactivation and $F-Ni-O_2-R_2$ after preactivation.

Aqueous energy storage	Potential	Energy	power	Reference
devices	Window (V)	density (Wh	density	
		kg-1)	(W kg ⁻¹)	
F-Ni-O ₂ -R ₂ //HHP Bi ₂ O ₃	0-1.6 V	55.1-127.6	800-32000	This work
Bi ₂ O ₃ /Bi ₂ Se ₃ NFs//NiCoSe ₂ /Ni _{0.85} Se NP	0-1.6 V	43.6-88.4	2400-32000	15
N-GNTs@O _V -Bi ₂ O ₃ NSAs//N- GNTs@CoNi ₂ S ₄ NP	0-1.6 V	51.3-86.6	1600-24000	16
Ni - Zn - Co - S-0.33 NSAs/NF//Bi ₂ O ₃ /NF	0-1.6 V	66.9-91.7	458-6696	17
Ni _x Co _{1-x} (OH) ₂ //Bi ₂ O ₃	0-1.6 V	37.0-66.0	356-6439	1
Ni(OH) ₂ //(BiO) ₄ CO ₃ (OH) ₂	0-1.6 V	27.3-92.0	27.3-670	18
ESCNF@Bi ₂ O ₃ //CF@NiCo ₂ O 4	0-1.9 V	18.0-25.1	786.2-2949	19
Bi//10#/Ag(37%)	0-1.6 V	3.8-25.4	400-2800	20

Table S7. Comparison of the performance of assembled $F-Ni-O_2-R_2//HHP Bi_2O_3$ device with others reported in the literature.

ASC devices	Potential	Energy	power density	Reference
	Window	density (Wh	(W kg ⁻¹)	
	(V)	kg ⁻¹)		
F-Ni-O ₂ -R ₂ //AC	0-1.6 V	29.1-64.6	800-32000	This work
CoP/NiCoP//AC	0-1.6 V	28.4-51.6	800-12000	21
NiMn-LDH//AC	0-1.6 V	16.9-46.7	1700-13500	22
MnCo ₂ O ₄ @Ni(OH) //AC	0-1.6 V	7.26-48	1400-14900	23
MnCo-LDH@Ni(OH)2//AC	0-1.5 V	9.8-47.9	750.7-5020.5	24
Ni(OH) ₂ //AC	0-1.3 V	12.6-35.7	490-1670	25

Table S8. Comparison of the performance of F-Ni-O2-R2//AC asymmetric supercapacitorwith other Ni-based ASC devices reported in the literature.

References

- 1 G. Zan, T. Wu, P. Hu, Y. Zhou, S. Zhao, S. Xu, J. Chen, Y. Cui and Q. Wu, *Energy Stor. Mater.*, 2020, **28**, 82-90.
- K. Zhang, H.-Y. Zeng, M.-X. Wang, H.-B. Li, W. Yan, H.-B. Wang and Z.-H. Tang, J. Mater. Chem. A, 2022, 10, 11213-11224.
- X. Yang, Y. Tian, S. Li, Y.-P. Wu, Q. Zhang, D.-S. Li and S. Zhang, J. Mater. Chem.
 A, 2022, 10, 12225-12234.
- M. Chu, Q. Xu, S. Chen, Y. Hu, H. Jiang and C. Li, *Chem. Eng. Sci.*, 2021, 240, 116649.
- 5 Q. Zong, H. Yang, Q. Wang, Q. Zhang, Y. Zhu, H. Wang and Q. Shen, *Chem. Eng. J.*, 2019, **361**, 1-11.
- J.-F. Zhang, Y. Wang, X. Shu, C.-P. Yu, M.-F. Xiao, J.-W. Cui, Y.-Q. Qin, H.-M.
 Zheng, Y. Zhang, D. Chen, P. M. Ajayan and Y.-C. Wu, *Sci. Bull.*, 2018, 63, 322-330.
- 7 S. Jiang, M. Pang, J. Zhao, B. Xing, Q. Pan, H. Yang, W. Qu, L. Gu and H. Wang, *Chem. Eng. J.*, 2017, **326**, 1048-1057.
- W. Song, J. Wu, G. Wang, S. Tang, G. Chen, M. Cui and X. Meng, *Adv. Funct. Mater.*, 2018, 28, 1804620.
- H. Fan, X. Zhang, Y. Wang, J. Lang and R. Gao, *J. Power Sources*, 2020, 474, 228603.
- 10 Z. Wang, J. Chang, L. Chen, Y. Li, D. Wu, F. Xu, K. Jiang and Z. Gao, *Electrochim. Acta*, 2019, **323**. 134815.
- Q. Wang, Y. Luo, R. Hou, S. Zaman, K. Qi, H. Liu, H. S. Park and B. Y. Xia, *Adv. Mater.*, 2019, **31**, e1905744.
- J. Ye, X. Zhai, L. Chen, W. Guo, T. Gu, Y. Shi, J. Hou, F. Han, Y. Liu, C. Fan, G.
 Wang, S. Peng and X. Guo, *J. Energy Chem.*, 2021, 62, 252-261.
- F. Shi, S. Zhao, J. Yang, Y. Tong, J. Li, S. Zhai, X. Zhao, S. Wu, H. Li, Q. An and K.
 Wang, J. Mater. Chem. A, 2022, 10, 12679-12691.
- Y. Lin, K. Sun, S. Liu, X. Chen, Y. Cheng, W. C. Cheong, Z. Chen, L. Zheng, J.Zhang, X. Li, Y. Pan and C. Chen, *Adv. Energy Mater.*, 2019, 9, 1901213.
- 15 A. Meng, X. Yuan, T. Shen, Z. Li, Q. Jiang, H. Xue, Y. Lin and J. Zhao, *J. Mater. Chem. A*, 2019, 7, 17613-17625.
- J. Zhao, Z. Li, T. Shen, X. Yuan, G. Qiu, Q. Jiang, Y. Lin, G. Song, A. Meng and Q. Li, *J. Mater. Chem. A*, 2019, 7, 7918-7931.

- 17 Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai and H. Zhan, *Nanoscale*, 2018, 10, 14171-14181.
- 18 J. Sun, J. Wang, Z. Li, L. Niu, W. Hong and S. Yang, J. Power Sources, 2015, 274, 1070-1075.
- 19 L. Li, X. Zhang, Z. Zhang, M. Zhang, L. Cong, Y. Pan and S. Lin, J. Mater. Chem. A, 2016, 4, 16635-16644.
- D. Ying, Y. Li, R. Ding, W. Shi, Q. Xu, Y. Huang, Z. Jia, W. Yu, X. Sun, P. Gao, E.
 Liu and X. Wang, *Adv. Funct. Mater.*, 2021, **31**, 2101353.
- Y. Lin, K. Sun, S. Liu, X. Chen, Y. Cheng, W. C. Cheong, Z. Chen, L. Zheng, J.
 Zhang, X. Li, Y. Pan and C. Chen, *Adv. Energy Mater.*, 2019, 9, 1901213.
- Y. Tang, H. Shen, J. Cheng, Z. Liang, C. Qu, H. Tabassum and R. Zou, *Adv. Funct. Mater.*, 2020, 30, 1908223.
- 23 Y. Zhao, L. Hu, S. Zhao and L. Wu, *Adv. Funct. Mater.*, 2016, 26, 4085-4093.
- S. Liu, S. C. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, J. H. Park, K. Y. Chung and
 S. Chan Jun, *J. Mater. Chem. A*, 2017, 5, 1043-1049.
- H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and
 G. W. Yang, *Nat. Commun.*, 2013, 4, 1894.