Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

TiVNb-based high entropy alloys as catalysts for enhanced hydrogen storage in nanostructured MgH₂

Jingxi Zhang^{a,b}, Huang Liu^{b,c}, Chengshang Zhou^{*,b,c}, Pei Sun^{*,b}, Xueyi Guo^{*,a}, Zhigang Zak Fang^b

a School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, P.R. China

b Department of Materials Science and Engineering, The University of Utah, Salt Lake City, Utah 84112-0114, United States

c State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083, P.R. China

*Corresponding author

E-mail addresses: chengshang.zhou@utah.edu; pei.sun@utah.edu; xyguo@csu.edu.cn

For the HEAs, the empirical parameters of average atomic size mismatch (δ), valance electron concentration (VEC) and electronegativity differences ($\Delta \chi_{Allen}$) are usually used to determine the phase structure formation and the stability¹⁻³. These parameters can be determined using the following equations:

$$\delta = \sqrt{\sum c_i (1 - \frac{r_i}{\bar{r}})^2} \times 100 \tag{1}$$

$$VEC = \sum c_i VEC_i \tag{2}$$

$$\Delta \chi_{Allen} = \sqrt{\sum_{i=1}^{n} c_i (\chi_i - \bar{\chi})^2 \bar{\chi}}$$
(3)

where c_i , r_i , VEC_i and χ_i stood for the atom fractions, the atomic radius, valence electron concentration and electronegativity of element i. \bar{r} and $\bar{\chi}$ represented the average atomic radius and the average electronegativity of HEA. The physicochemical parameters essential for the estimation of the above parameters were obtained from the literature ^{4 5} and provided in Table S1.

Element	Atomic radius (Å)	Electronegativity	VEC
Ti	1.46	1.54	4
V	1.32	1.63	5
Nb	1.43	1.6	5
Zr	1.6	1.33	4
Fe	1.24	1.83	8
Cr	1.25	1.66	6
Ni	1.25	1.91	10

Table S1 Atomic radius, electronegativities and VEC for selected of elements.

Figure S1 The isothermal dehydrogenation (a) and hydrogenation (b) curves of MgH₂-HEAs and pure MgH₂ at 300°C.

Figure S2 The TGA results for the (a) MgH₂-TiVNbZrFe, (b) MgH₂-TiVNbZrNi and (c) MgH₂-TiVNbCrNi under various heating rates.

Figure S3 The BSE and corresponding EDS elemental mappings for the (a) TiVNbZrFe, (b) TiVNbZrNi and (c) TiVNbCrNi

Reference

1 Zhang Y., Zhou Y. J., Lin J. P., Chen G. L. and Liaw P. K., *ADVANCED ENGINEERING MATERIALS*, 2008, **10**, 534-538.

2 Miracle D. B. and Senkov O. N., Acta Materialia, 2017, 122, 448-511.

3 Guo S., Ng C., Lu J. and Liu C. T., JOURNAL OF APPLIED PHYSICS, 2011, 109, 103505.

4 Mizutani U., Sato H., Inukai M., Nishino Y. and Zijlstra E. S., Inorg Chem, 2015, 54, 930-46.

5 Mishra S. S., Yadav T. P., Srivastava O. N., Mukhopadhyay N. K. and Biswas K., *Journal of Alloys and Compounds*, 2020, **832**, 153764.