ARTICLE

Table S1. Calculated dopant formation energies shown in Fig. 8.										
	E_{f} (eV/dopant)	3.125%	6.25%	9.375%	12.5%]				
	Nb (β)	1.06	0.79	0.70	0.63]				
	Nb (ε)	0.40	0.29	0.25	0.18					
	Ti (β)	0.43	0.20	0.13	0.0074					
	Ti (ε)	0.105	0.056	0.039	-0.023]				

Electronic Supplementary Information

Table S2. ICP data of Ti- and Nb-substituted LiVOPO₄·2H₂O, relative to P.

% Subs		Nb						
from synthesis	Li	V	Р	Ti	Li	V	Р	Nb
0	1.031	1.003	1.000					
1	0.971	0.965	1.000	0.012	0.964	1.006	1.000	0.008
2.5	1.023	1.011	1.000	0.031	0.927	0.990	1.000	0.027
5	0.981	0.962	1.000	0.062	0.935	0.951	1.000	0.077
10	0.875	0.871	1.000	0.136	0.750	0.910	1.000	0.149
15					0.445	0.774	1.000	0.270
20					0.333	0.648	1.000	0.386

Fig. S1. Comparison of XRD while heating pristine and substituted LiVOPO₄·2H₂O in O₂ via (a-c) the insitu method or (d-f) the gradient heater method.

Fig. S2. Phase quantification from in-situ heating in O_2 with XRD comparing pristine and substituted $LiVOPO_4 \cdot 2H_2O$.

Journal Name

ARTICLE

				U			0	
	Samula	α (ide	eal value is	s 0.5)	Angle (ideal value is 45 °)			
Sample		Pristine	1% Nb	3% Ti	Pristine	1% Nb	3% Ti	
	4.0 V	0.501	0.249	0.509	45.09	22.41	45.81	
	3.4 V	0.6136	0.551	0.653	55.224	49.59	58.77	
	1.6 V	0.501	0.431	0.432	45.09	38.826	38.853	

Table S3. Values for α from EIS fittings of the Warburg impedance using a CPE.

Fig. S3. Plots of frequency^{-1/2} vs either the real or imaginary impedance of the linear, low-frequency regions of the EIS for calculating the Warburg coefficients for the (blue) pristine, (red) 1% Nb-substituted, and (green) 3% Ti-substituted β -LiVOPO₄.

Table S4. Line	ar fitting v	alues for	the plots	in Fig. 🛛	S3; m is t	he slope,	b is the	e y-intercept	, and \mathbb{R}^2	is the
linear regress	ion goodn	ess of fit.	The slope	es are e	qual to th	e Warbur	g coef	ficients of the	ose sam	oles.
				I						

Impadanca	Subs	4.0 V		3.4 V			1.6 V			
Impedance		m	b	R ²	m	b	R ²	m	b	R ²
	Pris	34.3	623.0	0.998	61.3	685.3	0.952	37.1	597.6	0.997
Real	1% Nb				56.8	488.1	0.980	46.9	578.3	0.981
	3% Ti	24.1	401.5	0.998	36.6	363.3	0.937	31.1	346.5	0.971
Imaginary	Pris	32.8		0.999	79.3		0.985	36.9		0.998
	1% Nb				66.4		0.993	42.1		0.990
	3% Ti	24.6		0.999	58.5		0.958	25.7		0.988

Voltage	Slope of	e profile		
(V)	Pristine	1% Nb	3% Ti	
4.0	1.59		1.55	
3.4	-4.11	-3.89	-4.78	
1.6	-1.24	-0.88	-1.16	

Table S5. Slopes of the (dis)charge profile right before conducting EIS measurements

Calculation of the bulk Li^+ diffusion coefficient (D_W) is then calculated using the following equation proposed by Ho *et al.*¹

$$D_W = \frac{1}{2} \left(\frac{V_M}{zFa\sigma}\right)^2 \left(\frac{dE}{dx}\right)^2$$

where D_W is the bulk Li⁺ diffusion coefficient, V_M is the molar volume of β -LiVOPO₄ (50.61 cm³/mol), z is the number of electrons transferred during the reaction (1 e⁻), F is Faraday's constant, a is the electrode surface area (1.2 cm²), σ is the Warburg coefficient (Table S4), and dE/dx is the slope of the cycling profile (x in Li_xVOPO₄ vs V) right before taking EIS measurements (Table S5).

References in ESI

1. C. Ho, I. D. Raistrick and R. A. Huggins, Journal of The Electrochemical Society, 1980, 127, 343.