Supporting Information for

Versatile Nano-micro Collagen Fiber-Based Wearable Electronics for

Health Monitoring and Thermal Management

Zhongxue Bai^{1,3}, Xuechuan Wang^{1,2,3,*}, Mengchen Huang¹, Manhui Zheng^{1,3}, Ouyang Yue^{1,3}, Dongyu Hao^{2,3}, Yu Wang², Xiaoliang Zou^{1,3}, Boqiang Cui^{1,3}, Long Xie^{1,3}, Siyu Zha^{2,3}, Haiyan Ju⁴, Xinhua Liu^{1,2,3,*}

¹College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.

² College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.

³ Institute of Biomass and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China

⁴ School of Chemistry and Engineering, Wuhan Textile University, Wuhan 430073, China

*Corresponding authors: wangxc@sust.edu.cn (X. Wang); liuxinhua@sust.edu.cn (X. Liu)

S1. Fabrication of collagen fibers

The strategy for preparing CFs followed traditional leather-processing techniques.¹ The noncollagen components from goat skin were removed via various preparation processes, including washing, degreasing, unhairing, liming, fleshing, splitting, shaving, deliming, bating, pickling, etc. (1) Washing: the fresh skin and a solution containing 100 wt% (based on 4 times the weight of the fresh skin, the same as below) water, 1 wt% sodium hypochlorite, and 0.1 wt% sodium hydroxide were added to the leather drum, which was operated for 12 h at 25°C to remove dirt from the skin and dissolve partial soluble proteins of the skin. (2) Degreasing: most subcutaneous fat and residual meat were removed using a meat remover. In addition, the skin and a solution comprising 100 wt% water and 4 wt% sodium carbonate were added to the drum, which was operated for 2 h at 38°C to extract a portion of the skin lipids. (3) Unhairing: the skin and a solution containing 100 wt% water and 1 wt% sodium sulfide were added to the drum, which was operated for 1.5 h at 25°C. After that, 0.09 wt% sodium hydroxide was added, and the drum was operated for 6 h at 25°C to remove hair from the skin. (4) Liming: the skin and a solution comprising 100 wt% water and 3 wt% calcium hydroxide were added to the drum, which was operated for 18 h at 25°C to further disperse CFs, remove fibrous stroma, saponify oil, and remove hair and epidermis. (5) Fleshing, splitting, and shaving: the fleshing, splitting, and shaving of the skin were performed using a fleshing machine, splitting machine, and shaving machine, respectively, and the resulting skin had a different thickness. (6) Deliming: the skin and a solution comprising 100 wt% water and 1.0wt% lactic acid were added to the drum, which was operated for 1 h at 30°C to regulate the swelling state of the skin. (7) Bating: the skin and a solution containing 100 wt% water, 0.15 wt% pancreatin, 0.05 wt% protease, and 0.5 wt% ammonium chloride were added to the drum, which was operated for 1 h at 28°C to further remove epidermal, hair root, pigment, oil, elastin, myosin, etc., and to disperse CFs. (8) Pickling: the pickling solution was prepared using 100 wt% water and 8 wt% sodium chloride, and its pH was adjusted to 5 using HCl. The skin and the pickling solution were added to the drum, which was operated for 6 h at 25°C, followed by overnight standing for 12 h to ensure sufficient pickling. Therefore, pickling can effectively alter skin's pH and disperse CFs, which is beneficial for the stuffing of functional nanomaterials. (9) Tanning: after adding 1 wt% cationic oil into the pickling solution, the drum was operated for 0.5 h at 25°C. Afterward, 4 wt% chrome tanning liquid was added to the drum, which was operated for 2 h at 25°C. After that, 1 wt% baking soda dissolved in 20 wt% warm water was added to the drum in four batches, 0.5 h apart. The 50 wt% water at 50°C was added to the drum, which was operated for 2 h at 25 °C, followed by overnight standing for 12 h to ensure a sufficient multi-point combination of chrome tanning agents and CFs. Subsequently, on the following day, the bath liquor was released, and 300 wt% water was added to the drum, which was operated for 0.5 h at 25°C.

S2. Fabrication of hydrophobic SiO₂ nanoparticles

The hydrophobic SiO₂ nanoparticles were prepared based on previous work.² First, 1 wt% (based on the weight of ethanol, the same as below) PFDTES was dropwise added to a mixed solution of 10 wt% deionized water, 4 wt% ammonia hydroxide, 2 wt% SiO₂ nano-particles, and 100 wt% ethanol, followed by magnetic stirring for 24 h at 40°C. Afterward, the precipitate was recovered by centrifugation at 10,000 rpm for 10 min and then washed three times using ethanol. After centrifugation, the hydrophobic SiO₂ nanoparticles (denoted as F-SiO₂) were dried under a vacuum at 60°C for 12 h.

Supplementary Figures:

Fig. S1 Schematic illustration of the preparation of PPy/SCB@PP-CFs.

Fig. S2 SEM images of the surfaces of (A) Pr-CFs, (B) PPy-CFs, and (C) PPy/SCB@PP-CFs, as well as the the cross sections of (D, G, J, M) Pr-CFs, (E, E, K, N) PPy-CFs, and (F, I, L, O) PPy/SCB@PP-CFs.

Fig. S3 The (A) strength and (B) content of different elements on the cross section of PPy/SCB@PP-CFs.

Fig. S4 Surface morphology of (A) Pr-CFs, (B) PPy-CFs, and (C) PPy/SCB@PP-CFs corresponding to the Ultra-depth microscopic images.

Fig. S5 FTIR spectra of Pr-CFs, PPy-CFs, and PPy/SCB@PP-CFs.

Fig. S6 Raman spectra of Pr-CFs, PPy, PDMS, F-SiO₂, PFDTES, SCB, and PPy/SCB@PP-CFs.

Fig. S7 The micrographs corresponding to the Raman mapping images of (B) PPy and (C) SCB in PPy/SCB@PP-CFs.

Fig. S8 The water SAs on PPy/SCB@PP-CFs after immersion in water, 0.1 M HCl, 0.1 M NaOH, and 0.1 M NaCl for 48 h, respectively.

Fig. S9 (A) Digital pictures of mechanical durability test. (B) CA and SA changes of the water on PPy/SCB@PP-CFs during the mechanical durability test. (C) Digital pictures corresponding to different abrasion cycles.

Fig. S10 SAs of different droplets on the PPy/SCB@PP-CFs during cyclic bending-releasing with the sagitta of 8 mm.

Fig. S11 LOI values and Relative rations of LOI of Pr-CFs, PPy-CFs, and PPy/SCB@PP-CFs.

Fig. S12 Total heat releases of Pr-CFs, PPy-CFs, and PPy/SCB@PP-CFs.

Fig. S13 EMI SE_A (A) and SE_R (B) of Pr-CFs, PPy-CFs, and PPy/SCB@PP-CFs.

Fig. S14 The temperature changes of the (A-C) PPy/SCB@PP-CFs surface and (D-F) cavity covered by PPy/SCB@PP-CFs at -20°C under the Xenon lamp with a power of 1000 W·m⁻². The (A, D) 10 heating-cooling cycles, as well as the (B, E) 1st and (C, F) 10th heating-cooling cycle.

Fig. S15 The temperature and humidity of (A) roofs and (C) grass. The surface temperature changes of Pr-CFs, PPy-CFs, PPy/SCB@PP-CFs, and CB-CFs, as well as the temperature changes of the air in PE films, on (B) roofs and (D) grass.

Fig. S16 The thermal IR images of the glove made by PPy/SC@PP-CFs under direct sunlight.

Fig. S17 Digital pictures of the (A and C) white and (B and D) black T-shirt modified by PPy/SCB@PP-CFs: (A and B) front, (C and D) back.

Fig. S18 Digital pictures and thermal IR images of the white and black T-shirt modified by PPy/SCB@PP-CFs.

Supplementary Tables:

Table S1 The effect of $F-SiO_2$ usage on the superhydrophobicity and anti-abrasion property of PPy/SCB@PP-CFs.

Dosage	CA (°)	SA (°)	Anti-abrasion property
0.2 wt%	147.2 ± 1.4	8.43 ± 0.22	Good
0.3 wt%	150.5 ± 1.5	4.12 ± 0.20	Good
0.4 wt%	156.6 ± 2.1	1.84 ± 0.17	Good
0.5 wt%	162.1 ± 1.6	1.79 ± 0.13	General
0.6 wt%	164.6 ± 2.0	1.73 ± 0.09	Not good

Dosage	CA (°)	SA (°)	Air permeability	Moisture permeability	Anti-abrasion
			$(mL/(cm^2 \cdot h))$	$(mg/(10 \text{ cm}^2 \cdot 24 \text{ h}))$	property
0.2 wt%	148.6 ± 1.5	8.55 ± 0.23	40.5 ± 2.2	353.5 ± 5.7	Not good
	146.5 ± 1.4	9.39 ± 0.20			
0.3 wt%	150.2 ± 1.7	3.94 ± 0.21	38.2 ± 2.3	338.2 ± 6.1	General
	148.6 ± 1.5	4.52 ± 0.18			
0.4 wt%	156.6 ± 2.1	1.84 ± 0.17	35.8 ± 2.7	324.7 ± 5.3	Good
	154.3 ± 1.5	2.63 ± 0.11			
0.5 wt%	161.1 ± 1.9	1.80 ± 0.10	22.7 + 2.0	302.2 ± 4.8	Good
	157.3 ± 1.6	$2.31{\pm}~0.08$	32.7 ± 2.9		
0.6 wt%	163.3 ± 2.1	1.76 ± 0.08	30.3 ± 2.8	287.4 ± 4.6	Good
	159.6 ± 1.8	2.12 ± 0.10			

Table S2 The effect of PFDTES usage on the super-amphiphobic property, anti-abrasion property, as well as air and moisture permeabilities of PPy/SCB@PP-CFs.

The blue and orange backgrounds represent CAs and SAs of water and palm oil on PPy/SCB@PP-CFs, respectively.

II JI DED WIT ET B	•		
Dosage	CA (°)	SA (°)	Anti-abrasion property
0.2 wt%	147.6 ± 1.5	8.32 ± 0.22	Not good
0.3 wt%	151.4 ± 1.3	3.77 ± 0.20	General
0.4 wt%	156.6 ± 2.1	1.84 ± 0.17	Good
0.5 wt%	161.3 ± 1.7	1.80 ± 0.11	Good
0.6 wt%	164.6 ± 2.1	1.77 ± 0.12	Good

Table S3 The effect of PDMS usage on the superhydrophobicity and anti-abrasion property ofPPy/SCB@PP-CFs.

Dosage	Conductivity (S/m)	EMI shielding effectiveness (dB)	Anti-abrasion property
0.67 wt%	1.21 ± 0.21	7.8	Good
1.34 wt%	4.16 ± 0.28	12.7	Good
2.01 wt%	6.53 ± 0.40	18.3	Good
2.68 wt%	8.52 ± 0.53	22.1	General
3.35 wt%	11.34 ± 0.61	24.7	Not good

Table S4 The effect of Py usage on the conductivity and anti-abrasion property of PPy/SCB@PP-CFs.

01 5.			
Dosage	Conductivity (S/m)	EMI shielding effectiveness (dB)	Anti-abrasion property
0.2 wt%	1.21 ± 0.21	17.9	Good
0.3 wt%	4.16 ± 0.28	18.1	Good
0.4 wt%	6.53 ± 0.40	18.3	Good
0.5 wt%	8.52 ± 0.53	18.5	General
0.6 wt%	11.34 ± 0.61	18.6	Not good

Table S5 The effect of SCB usage on the conductivity and anti-abrasion property of PPy/SCB@PP-CFs.

Supplementary Movies:

Supplementary Movie S1:

The water CAs on Pr-CFs, PPy-CFs, and PPy/SCB@PP-CFs.

Supplementary Movie S2:

The self-cleaning test of PPy-CFs and PPy/SC@PP-CFs.

Supplementary Movie S3:

The vertical combustion test (UL 94) of Pr-CFs, PPy-CFs, and PPy/SCB@PP-CFs.

Supplementary Movie S4:

PPy/SCB@PP-CFs was used as a conductor to connect the LED and power.

Supplementary Movie S5:

The modified glove was employed to unlock the phone and make a phone call.

Supplementary Movie S6:

Relative current changes in response to the different fingers of the PPy/SCB@PP-CFs modified glove

under repeated bending.

Supplementary Movie S7:

The self-cleaning test of the glove made by PPy/SC@PP-CFs.

References

- 1 H. Zhang, X. Chen, X. Wang, X. Qiang, X. Li and M. Li, *Journal of Cleaner Production*, 2017, **142**, 1741-1748.
- 2 C. H. Xue, H. G. Li, X. J. Guo, Y. R. Ding, B. Y. Liu, Q. F. An and Y. Zhou, *Chem. Eng. J.*, 2021, **424**, 130553.