Supplementary information

Effects of magnetism and size of nano-oxide inclusions on the thermoelectric properties of Ge_{0.96}Bi_{0.06}Te

Can Zhu,^a Jian Wang,^a Xinqiang Zhu,^a Shun Zhang,^a Feng Xu,^a Feng Luo,^a Jiafu Wang,^{a,b} Yan Zhang,^{c,d} Hongxia Liu,^{c,d,*} and Zhigang Sun^{a,c,d,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

^b School of Science, Wuhan University of Technology, Wuhan 430070, China.

^c School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.

^d Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China.

* Corresponding author.

E-mail address: sun_zg@whut.edu.cn (Prof. Zhigang Sun) and hongxliu@126.com (Dr. Hongxia Liu)

sample name	wt%	ho (g cm ⁻³)	$N_{\rm NP}~({ m m}^{-3})$
matrix		6.07	-
GT30-1	0.38	6.06	3.48×10^{20}
GT30-2	0.76	6.05	6.91×10^{20}
GT30-3	1.14	6.02	1.03×10^{21}
GT100-1	0.38	6.07	8.44×10^{18}
GT100-2	0.76	6.05	1.68×10^{19}
GT100-3	1.14	5.97	2.47×10^{19}
GF30-0.2	0.22	6.05	2.53×10^{20}
GF30-0.5	0.55	6.00	6.26×10^{20}
GF30-0.8	0.88	6.01	1.00×10^{21}
GF30-1	1.10	6.03	1.25×10^{21}
GF30-1.5	1.65	6.01	1.86×10^{21}
GF30-2	2.21	5.96	2.45×10^{21}
GF30-3	3.31	5.89	3.59×10^{21}
GF100-1	1.10	6.05	1.70×10^{19}
GF100-2	2.21	6.10	3.40×10^{19}
GF100-3	3.31	6.01	4.97×10^{19}

Table S1 Weight ratio of nanoparticles (NPs), density (ρ), and number density of nanoparticles (N_{NP}) of composites regarding the NPs' type, size, and mole ratio.

Table S2 Gaussian fitting values of the size distribution for the various raw nanoparticles and*d* means the diameter based on a sphere model.

raw nanoparticle	mean d (nm)	standard deviation (nm)	median <i>d</i> (nm)	total number	Gauss <i>R</i> - square
30 nm TiO ₂	30.94	10.46	29.99	387	0.9092
100 nm TiO ₂	106.95	43.95	102.61	262	0.9653
30 nm Fe ₃ O ₄	26.86	7.30	26.19	225	0.9562
100 nm Fe ₃ O ₄	112.62	42.09	107.64	272	0.9618

Fig.S1 SEM images of the raw (a) 30 nm TiO₂, (b) 100 nm TiO₂, (c) 30 nm Fe₃O₄, and (d) 100 nm Fe₃O₄ particles. The insets show the particle size distribution and average diameter of various raw nanoparticles.

Fig.S2 Temperature-dependent carrier concentration ($n_{\rm H}$) of (a) GT30-n, (b) GT100-n, (c) GF30-n, and (d) GF100-n composites calculated from the composites' experimental values of electrical conductivity (σ) and Seebeck coefficient (*S*) and the Ge0.96Bi0.06Te matrix's assumed values of the effective mass (m^*)¹ based on the single parabolic band (SPB) model.

Fig.S3 Temperature-dependent logarithmic scale Hall mobility ($\mu_{\rm H}$) of (a) GT30-*n*, (b) GT100*n*, (c) GF30-*n*, and (d) GF100-*n* composites calculated from the composites' experimental values of σ and *S* and the matrix's assumed values of m^{*1} based on the SPB model.

Fig.S4 Temperature-dependent logarithmic scale weighted mobility (μ_W) of (a) GT30-*n*, (b) GT100-*n*, (c) GF30-*n*, and (d) GF100-*n* composites.

Fig.S5 Temperature-dependent power factor (*PF*) of (a) GT30-*n*, (b) GT100-*n*, (c) GF30-*n*, and (d) GF100-*n* composites.

Fig.S6 Temperature-dependent Lorenz number (*L*) of (a) GT30-*n*, (b) GT100-*n*, (c) GF30-*n*, and (d) GF100-*n* composites.

Fig.S7 Temperature-dependent carrier thermal conductivity (κ_e) of (a) GT30-*n*, (b) GT100-*n*, (c) GF30-*n*, and (d) GF100-*n* composites.

Fig.S8 Built-in magnetic field (*B*) introduced by (a) a multi-domain magnetic Fe₃O₄ nanoparticle and (b) a single-domain superparamagnetic Fe₃O₄ nanoparticle. (c) The relationship of the built-in magnetic field *B* of raw superparamagnetic Fe₃O₄ nanoparticles and the distance from their surface (*l*).

Single parabolic band (SPB) model for calculating electronic transport parameters

Utilizing the single parabolic band (SPB) model with acoustic phonon scattering, the effective mass (m^*) can be derived by:²

$$F_{j}(\eta) = \int_{0}^{\infty} \frac{\varepsilon^{j}}{1 + \exp(\varepsilon - \eta)} d\varepsilon$$
 (S1)

$$S = \pm \frac{k_{\rm B}}{e} \left[\frac{(r+5/2)F_{r+3/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \eta \right]$$
(S2)

$$m^* = \frac{h^2}{2k_{\rm B}T} \left[\frac{n}{4\pi F_{r+1}(\eta)} \right]^{2/3}$$
(S3)

where $F_j(\eta)$ is the Fermi integral function and η is the reduced Fermi level ($\eta = E_F/k_BT$), and k_B and h are the Boltzmann constant and Planck constant. The scattering factor r = -1/2 is taken for the Ge_{0.96}Bi_{0.06}Te matrix due to the phonon-dominated scattering mechanism in GeTe-based materials.³ According to the Mott equation of the relationship between the *S* and *n*,⁴

$$S = \pm \left(\frac{8\pi^2 k_{\rm B}^2}{3eh^2}\right) m^* T\left(\frac{\pi}{3n}\right)^{2/3} (r+3/2) \tag{S4}$$

since the nanoparticles are considered to have little influence on the band structure or the crystal structure of the matrix, the m^* can be treated as a constant, and the relationship between r and S of composites can be derived as:⁵

$$\frac{(r_{\rm composite}+3/2)}{(r_{\rm matrix}+3/2)} = \frac{S_{\rm composite}}{S_{\rm matrix}} \left(\frac{n_{\rm composite}}{n_{\rm matrix}}\right)^{2/3}$$
(S5)

Then, the scattering factor of the composites can be obtained according to the values of the Seebeck coefficient and carrier concentration of the composites and the matrix.

Since both *S* and σ are the function of carrier concentration and are related to each other, the transport coefficients (σ_{E0}) and the weighted mobility (μ w) are introduced to describe the intrinsic transport properties of materials.^{3, 6} They can be expressed as:

$$\sigma = \sigma_{\rm E_0} \ln(1 + e^{\eta}) \tag{S6}$$

$$\sigma_{\rm E_0} = \frac{2^{9/2} e \pi (m_{\rm e} k_{\rm B} T)^{3/2}}{3h^3} \mu_{\rm W} \tag{S7}$$

The parameter σ_{E0} is a conductivity expression independent of the carrier concentration (*n*_H), which excludes the error of the *n*_H in the Hall measurement. The σ_{E0} can be expressed by the μ w, which is closely related to the *m*^{*}. Therefore, the change in μ w can also explain the relationship between *S* and σ , and the μ w can initially reflect the scale of *PF*.

The *L* is the Lorenz number based on the SPB approximation:^{2,7}

$$L = \left(\frac{k_{\rm B}}{e}\right)^2 \left\{ \frac{(r+7/2)F_{r+5/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \left[\frac{(r+5/2)F_{r+3/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)}\right]^2 \right\}$$
(S8)

Langevin function fitting for superparamagnetic Fe₃O₄ nanoparticles

To confirm that 30 nm Fe₃O₄ NPs is indeed superparamagnetic, the experimental data of its M-H curve was fitted by the Langevin function:^{5, 8, 9}

$$M = M_0 \left(\coth\left(\frac{\mu\mu_0 H}{k_B T}\right) - \frac{k_B T}{\mu\mu_0 H} \right)$$
(S9)

where the vacuum permeability μ_0 is $4\pi \times 10^{-7}$ N A⁻², the Boltzmann constant k_B is 1.38 × 10^{-23} J K⁻¹, and the temperature *T* is 300 K. The fitting results show that the saturation magnetization intensity of 30 nm Fe₃O₄ NPs is $M_0 = 54.54$ emu g⁻¹, comparable with the M_s , as shown in **Fig.4**b. And the magnetic moment of a 30 nm Fe₃O₄ NPs is $\mu = 1.12 \times 10^{-17}$ A m², which is related to the average volume $\langle V \rangle$:^{5, 8, 9}

$$\mu = M_{\rm s,bulk} \rho \langle V \rangle = M_{\rm s,bulk} \rho \frac{\pi d^3}{6}$$
(S10)

where $M_{s,bulk}$ is the saturation magnetization intensity of bulk Fe₃O₄ ($M_{s,bulk} = 90$ emu g⁻¹).¹⁰ Thus, the average diameter *d* of 30 nm Fe₃O₄ NPs obtained from the *M*–*H* curve is about 35.76 nm, close to the Gaussian analysis result of SEM (mean *d* = 26.86 ± 7.30 nm), as shown in **Table S2**.

Built-in magnetic field introduced by a magnetic particle

Considering the built-in magnetic field introduced by one single-domain Fe₃O₄ NP with

a sphere model, the magnetic field *B* around the Fe_3O_4 NP can be calculated as follows^{11, 12}:

$$B = \frac{2J(d/2)^3}{3(l+d/2)^3}$$
(S11)

where J is the saturated magnetic polarization intensity of 30 nm Fe₃O₄ ($J = \mu_0 M_s \rho = 0.36$ T),

d is the diameter, and *l* is the distance from the sphere surface. The results are shown in **Fig.S8**c.

References:

- 1. C. Zhu, J. Wang, F. Luo, S. Zhang, J. Wang, Y. Zhang, H. Liu and Z. Sun, ACS Appl. Mater. Interfaces, 2022, 14, 38854–38864.
- 2. H. Naithani and T. Dasgupta, ACS Appl. Energy Mater., 2020, 3, 2200–2213.
- 3. N. H. Li, W. L. He, C. J. Li, G. W. Wang, G. Y. Wang, X. Y. Zhou and X. Lu, *J. Mater. Chem. A*, 2021, **9**, 2385–2393.
- 4. J. Youn, J. Ryu, H. Kim, S. K. Kihoi, I.-S. Son, S.-E. Chun, S. Yi and H. S. Lee, *Appl. Phys. Lett.*, 2021, **118**, 053902.
- W. Y. Zhao, Z. Y. Liu, Z. G. Sun, Q. J. Zhang, P. Wei, X. Mu, H. Y. Zhou, C. C. Li, S. F. Ma, D. Q. He, P. X. Ji, W. T. Zhu, X. L. Nie, X. L. Su, X. F. Tang, B. G. Shen, X. L. Dong, J. H. Yang, Y. Liu and J. Shi, *Nature*, 2017, **549**, 247–251.
- A. Suwardi, J. Cao, Y. Zhao, J. Wu, S. W. Chien, X. Y. Tan, L. Hu, X. Wang, W. Wang, D. Li, Y. Yin, W. X. Zhou, D. V. M. Repaka, J. Chen, Y. Zheng, Q. Yan, G. Zhang and J. Xu, *Mater. Today Phys.*, 2020, 14, 100239.
- 7. H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, APL Mater., 2015, 3, 041506.
- C. C. Li, S. F. Ma, P. Wei, W. T. Zhu, X. L. Nie, X. H. Sang, Z. G. Sun, Q. J. Zhang and W. Y. Zhao, *Energy Environ. Sci.*, 2020, 13, 535–544.
- 9. E. C. Devi and S. D. Singh, J. Supercond. Nov. Magn, 2021, 34, 617–622.
- 10. Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang and X. Deng, presented in part at the 2011 Chinese Materials Conference, China, 2012.
- 11. S. Ma, C. Li, W. Cui, X. Sang, P. Wei, W. Zhu, X. Nie, F.-H. Sun, W. Zhao and Q. Zhang, *Sci. China Mater.*, 2021, **64**, 2835–2845.
- 12. F. Luo, C. Zhu, J. Wang, X. He, Z. Yang, S. Ke, Y. Zhang, H. Liu and Z. Sun, *ACS Appl. Mater. Interfaces*, 2022, **14**, 45503–45515.