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Materials and experimental

Materials:

Poly(propylene glycol) bis(2-aminopropyl ether) (polyetheramine) with molecular weight of 230 

(D230) and 400 (D400), 1,6-hexylenediamine (HDA), N,N-methylene-bis-acrylamide (MBA), 

methacrylatoethyl trimethyl ammonium chloride (MTAC), Lithium bis(trifluoromethanesulphonyl) 

imide (LiTFSI), were purchased from Aladdin (Shanghai, China). Methanol was purchased from 

J&K scientific. All reagents were commercially available and used as supplied without further 

purification.

Experimental

Synthesis of hyperbranched polymers

The randomly hyperbranched polymers were synthesized by Michael addition reaction between 

D230/MBA, D400/MBA or HAD/MBA with various molar ratios. In all specimens, the molar ratio 

of primary amine group was set as 1.0 and the molar ratio of MBA varied from 0.8 to 1.0, thus the 

materials were denoted as D230-x, D400-x and HDA-x, where x corresponds to MBA molar ratios 

of 0.8, 0.9 and 1.0 respectively. For example, in a typical procedure, the synthesis of D230-0.9 was 

described as follows: 

Step 1: MBA (6.93 g, 0.045 mol) was added into a round bottom flask equipped with a magnetic 

stirrer containing mixed solvent of 45 mL methanol and 22.5 mL deionized water at 30 °C and 

stirred until it was dissolved totally. Then D230 (11.5 g, 0.05 mol) was fed into the flask directly. 

The mixture was stirred at 60 °C for 24 h. 

Step 2: MTAC (18.72 g, 0.09 mol) was added into above solution and continue stirred at 60 °C 

for 24 h. Here the amount of MTAC was depended on the residual amounts of amine group in step 

1 in order to consume all amines.

Step 3: Excess LiTFSI aqueous solution (with concentration of 37.5%) was added into above 

solution and continue stirring until a precipitate settles out. Then the crude product was washed 5 

times with deionized water to obtain a solid and then dried in a vacuum oven at 70 °C for 12 h.

The schematic diagram of synthetic reaction mechanism and the synthetic route of such 

hyperbranched polymers were shown in Figure S1 and S2, respectively. The -NH- of D230, D400 



and HDA can react with a CH2=CH- on MBA and MTAC under a mild condition to fabricate 

hyperbranched polymeric molecules. And the reaction can form new secondary amines and tertiary 

amines.

Preparation of adhesion layers: 

PSA: The adhesives was covered on the surface of the substrate, then a surface was covered on the 

adhesive layer at room temperature. After that the adhesion area was pressed by a dovetail clip for 

60 min. Then a thin coating layer was formed and two surfaces were adhered firmly. The adhered 

surface pairs can be directly used for different tests without any further operation.

HMA: The adhesives were covered on the surface of the substrate, then a surface was covered on 

the adhesive layer at 160 °C. After that the adhesion area was pressed by a dovetail clip and cooling 

to room temperature. The pressed time by a dovetail clip is 60 min. Then a thin coating layer was 

formed and two surfaces were adhered firmly. The adhered surface pairs can be directly used for 

different tests without any further operation.

Characterisation 

The chemical structure were characterized by a FTIR (Nicolet 6700, Thermo Scientific), operating 

in transmission mode from sample films cast onto KBr disks. The calculation process of total 

content of H-bonds and the content of order H-bonds is expressed as: the total content of H-bonds 

= , and the content of order H-bonds = . 1H Nuclear Magnetic ree1- 100%F

total

A
A

 order 100%
total

A
A



Resonance (1H-NMR) spectra were measured by AVANCE III 400MHz spectrometer using CDCl3 

as a solvent at room temperature. Thermogravimetric Analyzer (TGA) experiments were carried out 

with a TA instruments’ TGA209F1 with a heating rate of 20 °C/min from 50 to 700 °C. Differential 

scanning calorimetry (DSC) was carried out with NETZSCH DSC214, a cyclic heating/cooling run 

programme was taken under the rate of 10 °C/min at the temperature of -100 to 160 °C. Energy 

dispersive X-ray (EDX) spectra were collected on a Regulus-8230 scanning electron microscopy. 

Mechanical properties conducted at room temperature by using an MTS (2 kN) tensile machine. 

Five specimens of each composition were tested, the data reported were the average values. The 



specimens used as adhesives for lap-shear tests were conducted in an open environment with a 

humidity of 50-60%. The self-healing efficiency was calculated based on toughness, elongation at 

break and strength is , , and , respectively, where the Wsh and W 100%shW
W

 100%b sh

b



  100%shT

T


are the energy consumed during stretching of self-healed specimen and prisine specimen 

respectively, εb-sh and ε are the elongation at break of self-healed specimen and prisine specimen 

respectively, Tsh and T are the stretching strength of self-healed specimen and prisine specimen 

respectively. The resistance change were collected by electrometer (Keithley 6514). Rheological 

properties were performed on an oscillatory rheometer (Discovery HR-3, TA) using a 25 mm 

parallel plate-plate geometry. Prior to each experiment, approximately 1.2 mm thick film samples 

were prepared, and each film sample was placed between the parallel plates. A temperature-sweep 

experiment was carried out between 25 and 160 °C at an ω and shear strain of 1 rad/s and 1%, 

respectively. In addition, frequency sweeping was carried out at each temperature in the 

0.05−500 rad/s ω range at a constant shear strain of 1%. To establish a time-temperature 

superposition (TTS) master curve, data were acquired at intervals of 20 °C in the 30-110 °C range. 

TTS master curves of G' and G'' were constructed from the frequency-sweep data by shifting the 

data to the reference temperature (25 °C). 



Supplementary tables and figures

Figure S1. The schematic diagram of synthetic reaction mechanism of the hyperbranched 

polymers. The -NH- of D230, D400 and HDA can react with a CH2=CH- on MBA and MTAC 

under a mild condition to fabricate hyperbranched polymeric molecules. And the reaction can form 

new secondary amines and tertiary amines.



Figure S2. The synthetic route of the D230-0.9. The synthetic route of other specimens are 

similar with the one of D230-0.9 so those are omitted here.



(a) (b) (c)

Figure S3. The D230-0.8, D230-0.9 and D230-1.0 show a water contant angle of 107.3° (a), 

106.6°(b) and 106.5°(c), respectively.
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Figure S4. FTIR spectra of methacrylatoethyl trimethyl ammonium bis(trifluoromethanesulphonyl) 

imide (MTA-TFSI), MBA, D230, and D230-0.9, respectively. In the FTIR spectrum of MBA, the 

characteristic peaks at 3302 cm-1, 1656 cm-1, 1538 cm-1 are belonged to the strong stretching 

vibration of N-H group, C=O stretching vibration peak and N-H bending vibration peak, 

respectively, while the peaks at 987 cm-1 and 950 cm-1 are assigned to the bending vibration peaks 

of vinyl groups 1. In D230-0.9, the characteristic amide I band at around 1650 cm-1, amide II band 

at around 1537 cm-1 and disappeared vinyl group bending vibration peak indicate that the Michael 

addition reaction consumes all double bonds and hyperbranched networks are successfully formed. 

Here, the MTA-TFSI is the precipitate from the mixed aqueous solution of both LiTFSI and MTAC, 

which is an ionic liquid with hydrophobic properties. 



Figure S5. 1H-NMR spectra of (a) MBA, (b) MTAC, (c) D230 chemicals and the synthesized 

hyperbranched polymer of (d) D230-0.8, (e) D230-0.9, (f) D230-1.0, respectively. The typical 

proton signals at 6.25 ppm and 5.70 ppm corresponding to vinyl groups disappear after reaction, 

while new signals appear at 2-3 ppm belonging to the methylene of -CH2-CH2-CONH-. It indicates 

that all the vinyl groups have been consumed.2



Figure S6. The energy dispersive X-ray spectroscopy of D230-0.8.

Figure S7. The energy dispersive X-ray spectroscopy of D230-0.9.

Figure S8. The energy dispersive X-ray spectroscopy of D230-1.0.
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Figure S9. The TGA curves of such hyperbranched polymers.
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Figure S10. The fitted area ratio of peak I, II, and III in the range of 1720-1600 cm-1 corresponding 

to C=O stretching vibration.
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Figure S11. (a) The master curve of G′ and G″ for D230-0.9, the reference temperature is 25°C. (b) 

Illustration of the representative G′ and G″ master curves for typical viscoelastic polymer.
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Figure S12. Relaxation time curves of the D230-0.9 (frequency range 0.05-100 rad s−1, 25 °C). The 

segmental relaxation behavior was examined on the basis of the relaxation time obtained from the 

frequency-sweep data:

          Equation S1
* 2 *

'
( )

G 
  



where G', η*, and τ are the storage modulus, complex viscosity, and relaxation time, 

respectively. The τs was obtained from the τ value at 0.05 rad/s.
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Figure S13. The comparison of the self-healing speed and adhesive strength between D230-0.9 and 

other reported adhesives.

Figure S14. D230-0.9 could lift a weight of 500 g just by finger gently pressing with an adhesion 

area of 0.5 cm2



Figure S15. The bonding process of PSA under gently pressing by dovetail clip.

Cohesive failure

Interfacial failure

Figure S16. The fracture surface of D230-0.9 bonded to stainless steel as PSA.



Figure S17. D230-0.9 as PSA could adhere the hole in polypropylene buckets to prevent further 

water leakage with bonded area of only 1cm2.

Figure S18. The D230-0.9 exhibits considerable bonding ability to ceramic, which allowing broken 

ceramic mugs to be restored by hand force alone.

Hole Adhesive



Interfacial failure

Cohesive failure

Figure S19. The fracture surface of D230-0.9 bonded to stainless steel as HMA.
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Figure S20. The FTIR spectrum and fitted curves at the range of 1720-1600 cm-1 corresponding to 

the stretching vibration of C=O band. (a) before heating; (b) after cooling.
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Figure S21. The lap-shear stress versus displacement of D230-0.9 as HMA bonded to the stainless 

steel, iron, aluminum, polyamide and polyimide, respectively.

Figure S22. The digital picture of D230-0.9 dissolved in ethanol.



Table S1. Summary of the assignment of the FTIR absorption bands for the hyperbranched 
polymers.

FTIR bands (cm-1) Assignment (cm-1)

3380 ν(N-H) of primary amine ν(N-H)

3302 ν(N-H) of amide

3064 ν(NH3
+)

1719 ν(C=O)

1656 ν(N-H) of amide I

1536 ν(N-H) of amide II

1130 ν(C-F)

1050 ν(S-N-S)

987 δ(C=C)

950 δ(C=C)

760 Oxygen environment of TFSI- (bonded)3

739 Oxygen environment of TFSI- (free)3



Table S2. The carbon (C), oxygen (O), nitrogen (N), fluorine (F), sulfur (S) elements contents of 

D230-0.8, D230-0.9 and D230-1.0, respectively.

D230-0.8 D230-0.9 D230-1.0
Elements Theoretical

(%)
Experimental

(%)
Theoretical

(%)
Experimental

(%)
Theoretical

(%)
Experimental

(%)
C 48.90 45.78 49.80 47.90 50.70 47.87
O 20.70 23.64 20.50 21.97 20.40 24.61
F 15.40 12.62 14.70 13.04 13.90 11.75
N 9.80 12.33 10.10 12.23 10.40 10.98
S 5.20 5.63 4.90 4.86 4.60 4.79



Table S3. The summary of mechanical properties of such hyperbranched polymers.

Samples
Young’s Modulus 

(MPa)

Strength

(MPa)

Enlongation at break 

(%)

Toughenss 

(kJ/m3)

HDA-0.9 43.95 3.57 20 1215.87

D230-0.8 0.28 0.14 1685 949.67

D230-0.9 4.52 1.24 944 6525.42

D230-1.0 38.52 1.48 614 6673.85

D400-0.9 0.75 0.50 743 1714.46



Table S4. Summary of the assignment of the deconvoluted subpeaks in the FTIR C=O absorption 
bands for the D230-0.9.

Wavenumber (cm-1)
Assignment

D230-0.8 D230-0.9 D230-1.0 D230-0.9 after cooling

Free 1682 1680 1677 1679
H-bonded 
(disorder)

1652 1650 1648 1650
ν (C=O)

H-bonded 
(Order)

1616 1625 1627 1625

Total 
degree of 
H-bonds

75.5 77.9 81.4 90.7

The calculation process is expressed as:

The total content of H-bonds = ree1- 100%F

total

A
A



The content of order H-bonds = order 100%
total

A
A





Table S5. Temperature-dependent storage modulus (G’) and loss modulus (G’’) of D230-0.9 and 
reported polymers.

Supramolecular network 

polymers

Temperature

(oC)
G’ or G’’ Reference

SHR 20 to 160
G’ 20 MPa to 10 KPa 

G’’ 20 MPa to 1 KPa

4Macromolecules

2013, 46, 1841

Tr-PIB -20 to 120
G’ 3 MPa to 100 KPa 

G’’ 4 MPa to 2 KPa

5Macromolecules 

2014, 47, 2122

polyurethane 0 to 120
G’ 3 MPa to 40 Pa 

G’’ 0.5 MPa to 1 KPa

6Chem. Sci. 2016, 7, 

4291

poly(TA-DIB-Fe) 25 to 120
G’ 0.2 MPa to 7 KPa 

G’’ 0.1 MPa to 7 KPa

7Sci. Adv. 2018, 4, 

eaat8192

PDMS-Cat1-Zn 20 to 120
G’ 10 MPa to 2 KPa 

G’’ 1 MPa to 10 KPa

8ACS Appl. Mater. 

Interfaces 2019, 11, 

47382

DESPs 20 to 80
G’ 10 MPa to 5 KPa 

G’’ 10 MPa to 3 KPa

9Angew. Chem. Int. 

Ed. 2020, 59, 11871

poly (TA) 20 to 100
G’ 1 MPa to 100 Pa

G’’ 1 MPa to 500 Pa

10ACS Appl. Mater. 

Interfaces 2021, 13, 

44860

SEA-0.2 20 to 60
G’ 0.1 GPa to 10 KPa 

G’’ 0.1 GPa to 10 KPa

11ACS Mater. Lett.

 2021, 3, 1003

P(T0.7-co-A0.3) 60 to 130
G’ 0.18 MPa to 4.8 KPa 

G’’ 0.12 MPa to 4.8 KPa

12Adv. Funct. Mater. 

2022, 2112741

SMP0.9GNs0.1 20 to 120
G’ 0.6 GPa to 2 MPa 

G’’ 0.2 GPa to 1 MPa

13Chem. Eng. J. 2022, 

433, 133840

D230-0.9 25 to 150
G’ 0.07 MPa to 1.1 Pa 

G’’ 0.12 MPa to 2.1 Pa
This work



Table S6. The self-healing efficiency of D230-0.9 at ambient temperature.

Self-healing time (min) Strength (%) Modulus (%) Toughness (%)

10 44.0 90.7 25.6

30 75.4 89.3 52.5

60 92.7 92.0 91.3

# The cited references in Figure 3c.

The comparison the lap-shear strength of D230-0.9 and other reported PSAs.14-40

# The cited references in Figure S13.

The comparison of the self-healing speed and adhesive strength between D230-0.9 and other 

reported adhesives.7, 24, 41-50



Captions of videos:

Video S1. D230-0.9 bonded to three pieces of stainless steel under gently pressing could lift a 

dumbbell with weight of 10 kg.

Video S2. D230-0.9 as PSA could adhere the hole in polypropylene buckets to prevent further water 

leakage with bonded area of only 1cm2.

Video S3. Pressing the sandwiched D230-0.9 as PSA between two pieces of conductive glass in a 

close circuit could light the bulbs up.

Video S4. Cyclic pressing-releasing of the sandwiched D230-0.9 as HMA between two pieces of 

conductive glass in a close circuit could change the brightness of bulbs.
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